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Abstract 

Nonlinear flexural vibrations of doubly curved layered panels composed of three thick and 

with respect to the middle surface layers symmetrically arranged layers are analyzed. The 

panels are of polygonal planform and hard hinged simply supported with the edges fully 

restraint against displacements. The governing equations are derived by application of a first 

order shear deformation theory, and nonlinear structural behavior is considered by a modified 

Berger theory. Numerical results of rectangular panels with initial imperfections in nonlinear 

steady state vibration exhibit layerwise different cross-sectional rotations as main dynamic 

effect. 

BASIC EQUATIONS 

A panel of three thick isotropic and homogeneous layers in perfect bond is 

considered. Thickness and linear elastic properties of the outer layers are identical, 

however the inner layer may have a considerably different elastic modulus. All layers 

exhibit the same Poisson’s ratio . A small initial geometric imperfection   ŵ  of the 

middle surface is referred to the coordinates x and y in the projected (xy-) plane of the 

middle surface. The origin (z = 0) of the perpendicular coordinate z is the curved 

middle surface of the panel (and not the xy-plane) [1]. The boundaries of the panel 

with polygonal planform are modeled as hard hinged supported edges with the 

displacements perpendicular to the edge face fully restrained. All edges are straight, 

i.e. the imperfection   ŵ  is zero at the boundaries, and thus the middle surface of the 

doubly curved panel and of the xy-plane coincide at the edges. The mechanical 

description of the panel is based on a layerwise first order shear deformation theory, 

and thus, the displacement field of the ith layer may be expressed as [2], 
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u j = iu j

(0)
+ z  i j ,     i = 1,2,3, j = x, y  (1) 

 

w denotes the lateral displacement in z-direction common to all layer surfaces, which 

is superposed to the initial imperfection   ŵ . 
 i
u

x
, 

 i
uy  represent in-plane 

displacements in the ith layer in x and y direction, respectively, at distance z from the 

middle surface. 
  i
u

x

(0) , 
  i
uy

(0)  denote in-plane displacements at z = 0, and 
 i x

, 
 i y  are 

layerwise cross-sectional rotations, i = 1, 2, 3. Note that index i = 2 refers to 

quantities of the inner layer, and i = 1 and 3 belong to the upper and lower outer 

layer, respectively. Assuming perfect bond between the layers the in-plane 

displacements 
  i
u

x

(0) , 
  i
uy

(0)  of the faces (i = 1, 3) are expressed in terms of the in-

plane displacements of the middle surface 
  2

u
x

(0) , 
  2

uy
(0)  and the cross-sectional 

rotations [3, 4]: 
 

 
  i
u j

(0)
= 2u j

(0)
+ zi 2 j i j( )  ,    i = 1,3,  j = x, y  (2) 

 

where 
  
z1 = h2 / 2 , 

  
z3 = h2 / 2  denote perpendicular distances from the middle 

surface to the upper and lower interface, respectively. 

The transverse displacement component w is assumed not to be small compared 

to the panel thickness h, and thus, the interaction between the membrane stresses and 

the curvatures must be considered. This interaction results in the stretching of the 

middle surface and subsequently to nonlinear terms in the strain-displacement 

relations [1], 
 

 
  i j = iu j, j + w, j( )

2
/ 2 + w, j ŵ, j  ,  

  i xy = iux, y + iuy,x + w,x w, y  ,   (3.1) 
 

 
  i z = iu j,z + w, j  ,     i = 1,2,3, j = x, y  (3.2) 

 

 i x
, 

 i y  are the strains in x- and y-direction, respectively, and 
 i xy  denotes the in-

plane shear strain.  

The constitutive relations, however, are linear. For an isotropic, elastic material 

the stress components 
 x

, 
 y , 

 xy  are related to the strains by means of Hooke's 

law, see e.g. [5]. The normal stress component 
 z

 is assumed to be negligible and 

consequently dropped. 

Transverse shear stress components 
 xz

, 
 yz  are specified to be continuous 

across the interfaces according to Hooke's law [3, 6, 7], 
 

 
  i jz = Gi i j + w, j( ) = i+1 jz = Gi+1 i+1 j + w, j( )  ,    i = 1,2,  j = x, y  (4) 

 

 
Gi  is the shear modulus of the isotropic ith layer. In analogy to the Mindlin theory for 

homogeneous panels Eqs (4) exhibit the simplified assumption that the shear stress is 

uniformly distributed throughout the layers. From this relation and in combination 

with 
  
G1 = G3

 it follows that the cross-sectional rotations of both faces are identical: 

  1 x
= 3 x

 and 
  1 y = 3 y .  

Layerwise stress resultants are determined by integration of the stress 

components with respect to the thickness of the layers. Utilizing Eqs (4) the cross-
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sectional rotations of the faces are eliminated, and the layerwise resultants can be 

expressed in terms of the lateral deflection w, the cross-sectional rotations 
  2 x

, 
  2 y  

of the core, the middle surface strains and their derivatives, see [7]. 

The in-plane displacements of the middle surface at the edges  are fully 

restrained, i.e. 
  
2u

x

(0)
= 0 , 

  
2uy

(0)
= 0 , and thus, moderately large lateral 

displacements may be considered simplified by means of Berger’s approximation [8]. 

This approximation is based on the assumption that the elastic energy given by the 

second invariant of the middle surface strain tensor may be disregarded as compared 

to the square of the first invariant without substantially affecting the response. In 

Berger’s approach the influence of the in-plane force resultants is characterized by a 

time-variant isotropic force n, which is a constant throughout the panel domain . 

Following a procedure employed by Wah [9] and Irschik [10] n may be related to the 

lateral deflection w and the initial imperfection   ŵ  by the averaging integral 
 

 

  

n =
D 1

2
w,x

2
+ w, y

2( ) + w,x ŵ,x + w, y ŵ, y d  ,  

  

D =
2

1
Gi

i=1

3

hi  (5) 

EQUATIONS OF MOTION AND BOUNDARY CONDITIONS 

The equations of motion are derived considering the free-body diagram of an 

infinitesimal panel element, loaded by a lateral forcing function   p(x, y;t) . Thereby, 

in a common approximation, both, the longitudinal as well as the rotatory inertia are 

neglected, 
   i
u j

(0)
, 

  i j , thus, limiting the analysis to the lower frequency band of 

structural dynamics. Conservation of angular momentum with respect to the x- and y-

axes and conservation of momentum in x-, y-, and z-direction render after some 

algebra the following equations of motion of the nonlinear panel problem [7]: 
 

 
   

Se w + e x,x + e y, y( ) n w + ŵ( ) + µ w = p  (6.1) 
 

 

  

K e j, jj +
1

2
e j,kk +

1+

2
e k , jk Se w, j + e j( ) = 0  ,   (6.2) 

                                                                   
  j = x, k = y  and 

  k = x, j = y   
 

where 
 e x

 and 
 e y  denote effective cross-sectional rotations [3, 4], 

 

 

  
e j =

Se
2 j +

Se

1 w, j  ,  
  j = x, y  (7) 

 

Expressions (6) may be understood as the equations of motion of an imperfect 

homogeneous shear-deformable panel with mass per unit area µ , effective shear 

stiffness 
 
Se , and flexural stiffness K. The effective panel properties are given by 

 

 
  
µ = 2

1
h
1

+
2

h
2

 ,  
  

K =
2

1
2C

1
+ C

2( )  ,  

 

Se = K  (8.1) 
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In 
 
Se  a shear correction factor  

2  is employed, since the transverse shear stresses are 

assumed to be constant through the thickness. This is the same concept used in the 

Mindlin-Reissner theories for thick plates. In (8.1) 
 1

, 
 2

 denote mass densities of 

the faces and the core, respectively. 

Considering only polygonal contours  (i.e. straight edges) the boundary 

conditions of a composite shear-deformable panel with hard hinged supports can be 

modeled in the form [7] 
 

 :    w = 0  ,  
  e s

= 0  ,  
  e n,n = 0  (9) 

 

where n, s are local Cartesian coordinates at boundary with normal n pointing 

outwards. 

 Eqs (6) and (9) are solved for the kinematic variables  w , 
 e x

, 
 e y . In a 

subsequent step the individual cross-sectional rotations of the inner layer 
  2 x

, 
  2 y  

and of the outer layers 
  1 x

, 
  1 y  are derived by decomposition of Eqs (7) and (4), 

 

 

  
2 j = e j

Se 1
Se w, j ,  

  
i j =

G2

G1
2 j + w, j( ) w, j ,   i = 1,3,  j = x, y  (10) 

NONLINEAR HARMONIC STEADY-STATE RESPONSE 

In the following the dynamic steady-state response of rectangular imperfect layered 

panels to time-harmonic excitation is studied. The panels of length a, width b and 

thickness h are composed of three layers with layer to overall thickness ratios of 

  
h1(3) / h =1/4 and 

  
h2 / h =1/2. The overall dimension is characterized by the aspect 

ratio   a / b =3/4 and by the thickness to length ratios   h / a =0.08 and 0.05, 

respectively. The mechanical properties of the outer layers and the inner layer are 

specified through the ratio 
  
G1(3) / G2 =20. Poison’s ratio  for all layers is 0.3, and a 

shear coefficient  
2  of 1 is considered. The imperfection follows a sine half-wave 

according to 
  
ŵ = ŵ0  sin y / b( ) sin y / b( ) , where 

  
ŵ0

 denotes the maximum initial 

displacement in the center of the panel. Note that the x and y coordinates point in the 

direction of length a and b, respectively, and their origin is in a corner of the panel. 

For the solution of the actual boundary value problem, Eqs (6) and (9), the 

kinematic variables are expanded into the ortho-normalized set of mode shapes of the 

corresponding linearized panel [7]. Note that the mode shapes are not affected by the 

imperfection, which is proportional to the fundamental mode shape [7, 11]. The 

procedure of modal analysis renders a coupled set of nonlinear ordinary differential 

equations for modal coordinates, where structural damping is introduced via modal  
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Figure 1 – Amplitude functions of the central lateral deflection for different magnitudes of 

imperfections 
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Figure 2 - Amplitude functions of the central lateral deflection in and towards the direction 

of the center of imperfection curvature 

damping coefficients . For further details see [7]. In this study  is selected to be 

5% for all modes. In particular, frequency response functions due to a uniformly 

distributed lateral load 
  
p(x, y;t) = p0 sin t  are derived by sweeping the excitation 

frequency . The load amplitude 
  
p0

 is presented in non-dimensional form, 

  
p

*
= p0 a

3
/ K . At time t = 0 the load is subjected to the panel, and the nonlinear 

modal equations are solved performing a time-history analysis. Thereby, the infinite 

modal series are approximated by considering the first 4 symmetric modes. After 

decay of the transient response the maximum steady-state response is recorded. 

Figure 1 shows non-dimensional amplitude functions of the lateral deflection at 

the center of the thick panel (i.e.   h / a =0.08) with three different imperfection 

amplitudes, which are characterized by the ratio 
  
ŵ0 / h . The non-dimensional load 

amplitude 
  p

*  is 1.00. The amplitude functions 
 
W

+
 are normalized by means of the 
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corresponding static central deflection 
 
w

s+
 due to the static external pressure 

  
p = p0

.; and the excitation frequency  is related to the fundamental frequency 
 11

 

of the corresponding linear flat panel (
  
ŵ0 / h =0) with identical shape. Thereby, 

 
W

+
 is 

the inward displacement amplitude (in direction of the center of curvature), which is 

different from the outward amplitude 
 
W , see Figure 2 for a panel with 

  
ŵ0 / h =-0.65. 

From Figure 1 it can be seen that with increasing imperfection amplitude the 

pronounced nonlinear hardening response behavior gradually passes over to softening 

behavior. The bending deformation of the resonance curves leads for 
  
ŵ0 / h =-040 

and -0.50 to multivalued amplitudes, and the entire solution splits into stable and 

unstable branches. However, in Figure 1 only the stable portions of the response are 

displayed. For all considered panels the influence of subharmonic resonance becomes 

visible by additional peaks at about half of the linearized primary resonance 

frequency. For an imperfect panel with 
  
ŵ0 / h =-0.65 in Figure 3 response amplitudes 

 
W

+
 for different loads 

  p
* are displayed, and it can be seen that the type of 

nonlinearity (hardening or softening) strongly depends on the load magnitude
  p

* . 

Figure 4 presents inward amplitude response functions of the individual cross-

sectional rotations 
  1 x

 and 
  2 x

, the effective cross-sectional rotation 
 e x

, and the 

derivative of the displacement with respect to x,
  
w,x , at point (x/y = 0/0.5 b) for the 

same panel structure. All individual rotation amplitudes are normalized by means of 

the corresponding effective cross-sectional rotation 
 e x+

s  due to the static external 

pressure 
  
p = p0

. A non-dimensional load amplitude of 
  p

* =1.00 is considered. It can 

be seen that the cross-sectional rotations of the outer layers and of the inner layer do 

not coincide. In the primary response domain the amplitudes 
  1 x+

 of the outer layers 

are larger than that of the inner layer (
  2 x+

), in the vicinity of the second excited 

mode 
  2 x+

 exceeds 
  1 x+

. The amplitude response 
  1 x+

 is slightly overestimated 

by 
  
W,x  at the primary resonance frequency, otherwise the corresponding graphs are 

identical. Normalized amplitude response functions of the cross-sectional rotations 

  1 y , 
  2 y , 

 e y , 
  
w, y  at (x/y = 0.5 a / 0) are depicted in Figure 5. 
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Figure 3 - Amplitude functions of the central lateral deflection for different non-dimensional 

load amplitudes 
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Figure 4 - Amplitude functions of the layerwise and the effective cross-sectional rotations, 

and of the derivation of the deflection with respect to x at (x/y=0/0.5b) 
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Figure 5 - Amplitude functions of the layerwise and the effective cross-sectional rotations, 

and of the derivation of the deflection with respect to y at (x/y=0.5a/0) 

Subsequently, a thin panel with thickness to length ratio   h / a = 0.05 and a rise 

  
ŵ0 / h =-0.65 is considered. In Figure 6 the normalized amplitude functions of the 

cross-sectional rotations 
  1 x

, 
  2 x

, 
 e x

 and of 
  
w,x  at point (x/y = 0/0.5 b) are 

presented for an applied load of 
  p

* =1.00. It can be seen that for this thin panel the 

cross-sectional rotations of the outer and inner layers are almost identical in the quasi-

static frequency range. With increasing excitation frequency a difference between the 

individual cross-sectional rotations becomes apparent. From this result it can be 

concluded that the importance of a layerwise description of the displacement field is 

not only a function of geometry and material parameters but also of the considered 

frequency range. 
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Figure 6 - Amplitude functions of the layerwise and the effective cross-sectional rotations, 

and of the derivation of the deflection with respect to x at (x/y=0/0.5b); thin panel 
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