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Abstract                                                                                                                         
A quadratic nonlinear ordinary equation for coastal waves is presented. The equation takes 
into account the nonlinear interaction between dispersion, variable depth and bottom 
frictional dissipation. According to this equation the amplification and the evolution of the 
tsunami may be connected with nonlinear resonance of ocean waves near the coast line.  A 
tsunami is considered as a forced solitary-like wave. Analytic solutions which describe data 
of experiments and numerical calculations are presented. It is found that the nonlinear 
resonance can explain the catastrophic coastal amplification of tsunami.  

 

INTRODUCTION 

 
The concept of resonance [1-3] is used to explain the coastal evolution of a tsunami. 
It was shown that the coastal zone forms the resonant band where tsunami speed is 
very close to or coincides with the wave phase speed. The catastrophic evolution 
takes place as the tsunami passes this band. 
     Tsunamis have been studied in many publications and powerful numerical 
methods developed [5, 7, 10]. For example, Titov et al. [10] developed a numerical 
method which can solve problems connected with the generation, the propagation and 
the coastal evolution of tsunamis. There are also important analytic investigations of 
tsunami evolution [6, 8, 9]. As a result, the propagation of tsunami in the deep ocean 
is understood well. In contrast, the coastal evolution of tsunami is more difficult to 
simulate since this evolution is governed by many parameters. Which parameters are 
the most important is difficult to determine. Here we introduce a transresonant 
parameter R. Linear and nonlinear theories give the same results when the tsunami 



passes the continental slope and 1>>R . The catastrophic amplification takes place 

within the coastal zones where 1<R .   

NONLINEAR RESONANCE OF COAST OCEAN WAVES AND TSUNAMI 

 
As the tsunami model we use a unidirectional travelling wav  )(τff = ,  

.   Here t  is time,  a  is the Lagrangian coordinate and C is the wave 
velocity.  The evolution of this wave near the coast is described by a quadratic 
nonlinear ordinary equation [1-3] 
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Here g is the acceleration due to gravity, h = h(a) is the depth, μ  is the coefficient of 
the bottom friction and  X  the component of the body force. The subscript a indicates 
derivative with respect of time. 
     In (1) the linear and nonlinear acoustic terms have been written on the left, and the 
various second order terms which arise from dispersion, the bottom friction, and the 
variable depth appear on the right.  It is seen that the left hand side terms annihilate 
each other at the point where  
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This point may be called the nonlinear resonance. 

     Below we consider particular cases of (1). The tsunami is modelled as a solitary – 
like wave.  

1.  Linear Waves:  For linear free waves eq (1) yields 
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Let . Then we derive the dispersive relation )(sech2' ωτ=f 22
3
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Let   1CghC += , where  1Cgh >> .  If  h  is small enough then  
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    Thus  takes into account the weak dispersion effect.  It is seen that (4) depends 
on the wavelength and the depth. The larger the wavelength, the weaker the 
dispersion.  

1C

2.  Tide-like wave: Following [1-3, 5] we assume that the earthquake-induced tsunami 
may be  considered as tide-like wave which is excited by the body force X.  We shall 
model the tsunami as a solitary wave. The forcing (incident) wave is written in the 
form . In this case the linear expression for the water elevation is   )(sech d 2 ωτετ =∫ X
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3.  Nonlinear resonance: Now we rewrite (1) at the vicinity of the nonlinear 
resonance [3] 
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Here C  is a constant of integration. We assume that C  = 0. Coefficients B and χ  
are determined as  , 5.122 )( −−= ghhA ω 221
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      Eq (6) describes the nonlinear evolution of ocean waves near a coast line. 
According to this equation, near the resonance the linear effect is reduced and may be 
of second order value. As a result, the influence of nonlinearity, bottom friction, 
dispersion and depth on the coastal evolution of the waves increases. 

 4.  Near-resonance solution for weak bottom friction: Let the effective friction χ  be 
very small. Then eq (6) transforms into an algebraic quadratic equation. Using the 
solution of this equation we find 
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5.  Near-resonance solution: Now we consider the full equation (6) which is rewritten 
in the form 
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Let 025.0 22 =+− CAB . Now following [3] we find that 
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where R is a transresonant parameter:  επ 11 /25.0 −−= ABAR .  Generally speaking 
the expressions (7) and (9) are valid only in the vicinity of the resonance.   
 

COAST TRANSRESONANT TSUNAMI EVOLUTION:  RESULTS OF TESTS 
AND CALCULATIONS 

 
The aim of the calculations is to check the theory. Therefore in this section we use the 
analytic solutions (5), (7) and (9) to simulate Synolakis’ experimental data [5, 8, 9] 
and Smith’s numerical data [7]. 
      Since the bottom friction coefficient μ  is not a well determined value we 
consider μ  to be an arbitrary value. Similarly, it is known that near a beach the local 
wave speed is not well determined. Different points on the nonlinear wave, such as 
points of a wave crest and points of a steep wave front, have different time-varying 
speeds.  At the same time, it is known from Russell’s experiments [4], that the speed 
of a solitary wave depends on the maximum elevation of a wave:  )(hηη = . 
Therefore we assume in (5), (7) and (9) that 
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The value of η  is calculated for the maximal amplitude of the forced wave according 

to (7):  ).4(5.0 211 ABBChA εη ++−= −−    Values ε  and ω  in the solutions are 
chosen so that the calculated results for points that are located far from the coast line 
match the experimental and numerical data. The solutions are then used to calculate 
the wave profiles for other points and time.  

1.  Synolakis’ data [5, 8, 9]:  These data are simulated as a nonlinear resonance 
phenomenon. It is suggested that  m0005.0 1 =−μρ 2sec-2 and the bottom slope is 
1:19.85. First we simulate data presented in Figs 8 (a-c) from [5] assuming that 

1125.0 −=ε  m/sec, ω =1.4 sec-1. Results of the calculations are presented in Fig.1. 

     The profiles, that are drawn as thin lines, are calculated according to the equation: 
.  Profiles, that are drawn as thick lines, are calculated according to 

solution (7). Here, and below, lines a and b show the dependence of coefficients (-A) 
and (-B) in (7) on h.  The line ‘FRICTION’ shows, here and below, the variation of 
the value 1000  , which is proportional to the bottom friction, with 
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depth.  One can see that the amplitude of the nonlinear waves is close to the observed 
amplitude. The nonlinear profiles also describe the steepness of the wave front near 
the cost line.  

     Data from [8, 9] are now simulated.  Results are presented in Figs 2 and 3. 

Profiles  a , b and c are calculated according to equation    for t = 
2, 4, 8 sec. Profiles 1, 2 , 3 and 4 are calculated according to the nonlinear solution (7) 
for t  = 2, 8, 10 and 20 sec.  
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Figure  1 - Profiles a and b are calculated  for  t = 2,  3.5  sec.     Profiles  1,  2 , 3 
and  4 are calculated for  t  = 2,  5,  8  and  11 sec. 

 
 

 
 

Figure  2 -  Simulation  of experimental data from Synolakis ([5], Figure 8 (a-c)):   
00215.0 =ε  m/sec,  ω =0.5 sec-1.    

 



 

 
 

Figure  3 - Simulation of experimental data from Synolakis ([5], Figure 6 (a-d)): 
00215.0 =ε  m/sec,  ω =0.5 sec-1.  

 
One can see that the nonlinear solution (7) describes the coastal evolution of a 
solitary wave which was observed in the experiments. Thus the coastal evolution of 
the solitary-type wave may be connected with the nonlinear resonance. 
 
2. Smith’s numerical data[7]:  Using (5), (7) and (9) we simulate numerical data 
presented in Figures 7 and 8 in [7]. The results are shown in Figures 4 and 5. The 
lines marked by a are drawn according to the linear solution (5), the thin lines are 
drawn according to analytic nonlinear solution (9) and the thick lines (points) are 
calculated with the help of solution (7).  The line R/2 describes the variation of the 
transresonant parameter.  
 

 
 

Figure 4 -  Nonlinear resonance. The simulation  of  Figure 7  [9].   



 
 

Figure 5 -  Nonlinear resonance. The simulation of Figure 8 [9]. 
 

Comparing Smith’s numerical data [9] and Figures 4 and 5 one can see that the linear 
solution approximately describes the numerical data only if R >1. If R <1 then the 
amplitude of the linear wave can be much larger the numerical data. However if R <1 
then the nonlinear solutions are applicable.  In particular, analytic solution (9) is 
approximately valid if R <0.6, while solution (7) is valid within and near the resonant 
band (following [1-3] we determine  this band as a field where   1≤R ).   
 

 
 

Figure 6 – The profiles are calculated for  t =200, 2000,  7000,  15000,  20000 sec. 
 
The interaction of the tsunami ( 00005.0−=ε m/sec; 0025.0=ω 1/sec) and the 
continental slope is shown in Figures 6 and 7.  Results of the linear theory (5) (thin 
lines) and the nonlinear theory (7) (thick line and points) show that the theories give 
same results when the tsunami passes the continental slope and 1>>R . The 
difference of the results and the catastrophic amplification appears only within the 
coastal zone where 1<R . 



 
 

Figure 7 – The profiles are calculated for  t =200, 2000, 7000, 15000, 20000 sec. 
 

CONCLUSIONS 
 

Equation (1) approximates the evolution of shallow ocean waves. It was found that 
the coastal evolution of tsunamis is located within resonant band and connected with 
the nonlinear resonance. According to the calculations the nonlinear theory is 
applicable near the coast line, while the linear approximation is valid far from the 
coast. This agrees with Synolakis’ conclusion [8, 9].   

     The solutions and the results of the calculations clearly show that the coastal 
evolution of a tsunami is a result of nonlinear resonance. During this transresonant 
evolution the solitary-like wave can be transformed into the shock-like wave (the 
wall of the water). 
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