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Abstract 
In recent years, according to very rapid increase of various kinds of information and 
communication equipment like personal computers and portable radio transmitters, not only a 
problem of the technical characteristics of equipment and propagation but also a problem of the 
influence to the environment including human body has become gradually important. In this 
study, an evaluation and/or measurement method toward compound effect based on the 
inter-subjective relationships between sound (with other environmental factors) and 
physiological factors have been proposed, especially through some examples of physical 
factors (sound and magnetic field) and physiological factors (mean blood pressure and 
pulsation) surrounding an indoor electrification environment. Finally, with an application to 
actually measured data, a part of the effectiveness of the proposed method has been also 
experimentally confirmed. 

INTRODUCTION 

Needless to say, our living circumstance is surrounded by various kinds of wave 
environmental factors, such as sound, light, electromagnetic (EM) waves and so on. 
Besides, they form indivisible problematique in a complex manner by the natural, 
social and human factors. And, in these wave motional environmental problems 
including sound, light and EM waves, the studies on compound and/or accumulation 
effects among those wave environmental factors are becoming more important year by 
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year, according to the increase of various types of information and communication 
systems such as personal computers and portable radio transmitters. Furthermore, these 
kinds of problems are studied more widely not only on the EM environment itself 
leaked by an electronic equipment, but also on the biological effects in the living 
environment [1]. For instance, concerning their individual and/or compound effects on 
a living body, it is well-known that there are many unsolved questions like video (or 
visual) display terminal (VDT) symptoms. To cite several concrete examples, our brain 
nerve is well-known to be mostly influenced below the frequency of 20Hz at EM, 
sound and light waves. This is recognized in an amplitude modulation of the high 
frequency domain as well. Also, the generating order, the interval and each duration of 
flashes and noises along a time axis produce some problems for the relationships to 
physiological processes. Otherwise, there are more other similar problems, such as a 
predominant effect of sight (Hearing seems to be dragged to sight having higher 
warning ability.), a promotion effect among different kind of senses, participation to 
VDT symptom groups (e.g. complain of general malaise) as well as multiplication 
effect with stress, relationships between daily rhythm of human life and the effects to a 
pineal body by EM field including light, some changes of brain waves by stimulus of 
light and sound, and so on. In these studies, it is generally pointed out that the first 
important topic is to find some new measurement and evaluation methods even in a 
quantitative approximation. 

In general, it is well-known that usually EM and sound waves are precisely 
measured in a frequency domain under the standardized measuring situation in a 
reverberation room, anechoic room and radiofrequency anechoic chamber. Surely, 
these standard methods in a frequency domain are useful especially for the purpose of 
analyzing (from the separatism-first viewpoint) the mechanism of individual 
phenomena, but they seem to be insufficient for evaluating (from the relationism-first 
viewpoint) total images on the compound or mutual relationship among sound, light 
and EM waves in the actual complicated living circumstances [2]. In previously 
published papers [3-6], for a trial, we have proposed an extended regression analysis 
method [7] reflecting various type latent correlation information of not only the 
ordinary lower orders, but also of the higher orders in order to quantitatively 
investigate and evaluate the mutual relationship among them, especially from a 
viewpoint of “Relationism-first”. 

In this paper, in relation to the previously published methodological studies 
[8-12], a stochastic methodology to grasp the mutual relationship between physical 
factors (sound and magnetic field) and physiological factors (mean blood pressure and 
pulsation) in an indoor acoustic environment is discussed, especially through a system 
model from the extended regression analysis. Only after such a relational analysis, in 
order to mutually predict their probabilistic behaviour from one to another, we have 
proposed a parameter estimation method based on an internal statistical architecture of 
the joint probability among these factors. Then, the validity and effectiveness of our 
proposed method are confirmed through some principle experiment by an application 
to the observation data in the room of an actual living environment. 
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GENERAL THEORY 

In order to evaluate quantitatively and hierarchically the complicated relationship 
between two variables (e.g. sound and mean blood pressure), let us introduce first a 
generalized regression analysis method [7] employing not only the linear correlation 
but also the nonlinear correlation information among them. Especially, in the case with 
a prediction variable x  and a criterion variable , it must be noticed that the whole 
information on mutual correlation between them is included in the conditional 
probability distribution 
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where  denotes the fundamental probability density function of ( )yP0 y .  and 

 are orthonormal polynomials with two weighting functions  and , 
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⋅  denotes the averaging operation with respect to the random variables. Thus, the 
information on the various types of linear and nonlinear correlations between  and  
is reflected hierarchically in each expansion coefficient  [13]. 
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where the expansion coefficients  and  are calculated in advance through the 
realization of the orthonormal polynomial 

10C 11C
( ) ( )yn
2ϕ . Thus, after estimating the 

expansion coefficient  defined by Eq. (2) on the basis of the observed data on  
and , the regression function between  and  can be evaluated. 
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Furthermore, a specific probability distribution ( )yPs  of  based on an arbitrary 
type random fluctuation of regressively related stochastic variable x  can be predicted 
by an averaging operation based on Eq. (1), as follows: 
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Concretely, the well-known normal distribution can be practically introduced as 

two fundamental probability density functions ( )xP0  and ( )yP0 . By utilizing Hermite 
polynomials: ( )⋅iH , the regression function xy  in Eq. (4) and the regression 
parameter  in Eq. (2) can be realized respectively, as follows: mnA
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Furthermore, specific probability distribution ( )yPs  in Eq. (5) and the parameter 

 in Eq. (6) can be finally realized respectively, as follows: nB
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EXPERIMENT 

In order to confirm a part of the effectiveness of the proposed method, a kind of indoor 
acoustic environment has been chosen as a specific electrification environment. The 
principle experiment is carried out for analyzing the human physiological 
characteristics (mean blood pressure and pulsation) against the physical stimuli (sound 
and magnetic field). 

Extended Regression Analysis between Physical Stimuli and Physiological 
Responses and Mutual Estimation of Probability Distribution 

The proposed method is applied to the measured data using a VDT equipped with a 
cathode-ray tube (CRT) type display while playing a video game (a kind of flight 
simulators) in living room environment. In this paper, only an essential point is 
described here. The sound pressure level [dBA], the r.m.s value of the magnetic field 
strength [mG], the mean blood pressure and pulsation are simultaneously measured. 
All subjects were healthy young women. 
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(a)         (b)10M = 10M =  
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(c)         (d)6M = 11M =  

Figure 1 –Comparisons between experimentally sampled conditional mean values ( ) and 
theoretical regression curves (            : linear,          : higher order approximation) from physical 

factors to physiological factors. 

∆

Figure 1 shows comparisons between experimentally sampled conditional mean 
values and theoretical regression curves from physical factors (i.e. sound and magnetic 
field) to physiological factors (i.e. mean blood pressure and pulsation). In these figures, 
the theoretical regression curves explain the actual tendency roughly well even in the 
form of conditional mean and furthermore higher order approximation. In addition to 
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this, the effect of the magnetic field to the pulsation appeared in figure 1(d) seems quite 
different from the others. 

Figure 2 shows comparisons between experimentally sampled conditional mean 
values and theoretical regression curves from physiological factors (i.e. mean blood 
pressure and pulsation) to physical factors (i.e. sound and magnetic field) in reverse. In 
these figures, the theoretical regression curves also explain the tendency of conditional 
mean value by higher order approximation well. Furthermore, the expanded expression 
of the regression function in figure 2 requires fewer truncate term M  than those of the 
regression function in figure 1. 
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(a)         (b)4M = 3M =  

4.50

4.75

5.00

5.25

5.50

50 60 70 80 90 100
Mean blood pressure [mmHg]

M
ag

ne
tic

 fi
el

d
st

re
ng

th
 [m

G
]

4.50

4.75

5.00

5.25

5.50

50 60 70 80 90
Pulsation

M
ag

ne
tic

 fi
el

d
st

re
ng

th
 [m

G
]

 
(c)              (d)3M = 3M =  

Figure 2 –Comparisons between experimentally sampled conditional mean values ( ) and 
theoretical regression curves (          : linear,          : higher order approximation) from 

physiological factors to physical factors. 

∆

Figure 3 shows comparisons between experimentally sampled specific 
probability distribution  and theoretically estimated distribution curves from 
physical factors (i.e. sound and magnetic field) to physiological factors (i.e. mean 
blood pressure and pulsation) by use of Eqs. (9) and (10). 

( )yPs

Figure 4 shows comparisons between experimentally sampled specific 
probability distribution  and theoretically estimated distribution curves from 
physiological factors (i.e. mean blood pressure and pulsation) to physical factors (i.e. 
sound and magnetic field) in reverse. 

( )yPs

From these figures, it was found that all theoretical curves show a fairly good 
agreement with experimentally sampled points, in spite of an early stage of study. 
Hereafter, there remains an important problem to be solved on how higher order 
expansion parameter  is connected concretely with human character. mnA
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(a)  (based on sound)   (b) 4N10,M == 3N10,M ==  (based on sound) 
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(c)  (based on M-field)          (d) 3N6,M == 3N11,M ==  (based on M-field) 

Figure 3 –Comparisons between experimentally sampled specific probability distribution ( ) 
and theoretically estimated distribution curves (           : initial term,          : higher order 

approximation) from physical factors to physiological factors. 
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(a)  (based on m.b.p.)       (b) 10N4,M == 10N3,M ==  (based on pulsation) 
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(c)  (based on m.b.p.)           (d) 6N3,M == 11N3,M ==  (based on pulsation) 

Figure 4 –Comparisons between experimentally sampled specific probability distribution ( ) 
and theoretically estimated distribution curves (           : initial term,          : higher order 

approximation) from physical factors to physiological factors. 
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CONCLUSIONS 
In this paper, a stochastic methodology has been discussed first in close connection with the mutual 
relationship between sound (with other environmental factors) and psychological or physiological 
factors surrounding an indoor acoustic environment, especially through a system model based on an 
extended regression analysis reflecting not only the linear but also the nonlinear correlation information. 
More specifically, in order to mutually predict their probabilistic behavior from one to another, we have 
proposed a parameter estimation method based on an internal statistical architecture of the joint 
probability among these factors. Finally, the validity and effectiveness of our proposed method have 
been confirmed through some principle experiment by applying it to the observation data in the room of 
an actual living environment. 

As mentioned at the beginning, there still remain many unsolved problems in the methodological 
research in measurements and evaluations which give any suggestion to compound and accumulation 
effect in the EM environmental problems in an actual working environment. From now on, it seems to 
become more important to find out accurate correlation evaluation method and/or accurate measurement 
technique in a time domain rather than an analytic technique in a frequency domain [14]. 
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