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Abstract 

Piezoelectric effects inducing flexural vibrations in viscoelastic sandwich panels are studied. 

Geometrically linearized conditions are considered, and the Bernoulli-Euler hypothesis is 

applied separately to each of the three layers. At the interfaces a linear viscoelastic slip law is 

assigned and a sixth-order initial-boundary value problem of the flexural vibrations is 

derived. In a numerical study, the frequency response function for the deflection of sandwich 

panels due to imposed time-harmonic piezoelectric eigenstrains is determined, which 

represents the important input function for computational methods in the frequency domain. 

INTRODUCTION 

Considering vibration control of flexible structures, the corresponding distributed 

actuators are frequently realized by embedding layers of piezoelectric materials, see, 

e.g., [2] and [5]. Such devices are often constructed in form of thin panels, plates or 

shells, [4]. Activation renders piezoelectrically induced strains that are imposed to 

generate the distributed input of the control system. 

The present paper is concerned in detail with actuating piezoelectric effects in 

sandwich panels, where special emphasis is given to the identification of the 

piezoelectric actuation as a source of selfstress. It is demonstrated that 

piezoelectrically induced strains conveniently, within a multiple field approach, can 

be interpreted as eigenstrains acting in a background panel without piezoelectric 

actuators. The identification of piezoelectrically induced strains as eigenstrains, 

likewise to thermal strains, indeed may be viewed as the key for the understanding of 

piezoelectric actuation. It has been stated already in the literature that the analogy 

between the piezoelectric effect and the thermal and hygrothermal effect is important 

because it enables the analyst and designer to transfer all available thermoelastic and 
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hygrothermal solutions to solve problems involving piezoelectric materials. This 

analogy is utilized in the present paper, where the layer-wise theory is applied to 

flexural vibrations of panels composed of three symmetrically arranged layers made 

of dissimilar isotropic materials. Contrary to the classical theory of perfectly bonded 

laminates, the following study concentrates on panels where the inter-laminar 

connections exhibit a viscoelastic interlayer slip between the outer faces and core. 

The influence of transient piezoelectric actuation is characterized by effective terms 

of the imposed mean strain and curvature. The corresponding sixth-order initial-

boundary value problem of the flexural vibrations is formulated. A numerical 

example of frequency response function for the panel deflection effected by imposed 

time-harmonic thermo-piezoelectric sources illustrates the influence of the inter-

laminar connection on the dynamic structural behavior. For an extension to thermo-

piezoelectrical flexural vibrations see [3]. 

CONSTITUTIVE MODELING OF A UNIAXIAL PIEZOELECTRIC 

LAYER 

In the following, a single piezoelectric beam-type layer with rectangular cross-section 

is studied, where the axial coordinate is denoted by x . The layer's deformation is 

assumed to take place in the (x, z) -plane, z  denoting the transverse coordinate of the 

laminate. The piezoelectric layer acts as a capacitor, where the electric voltage V  is 

constant along the metallic electrodes of the capacitor and is connected to the non-

vanishing component of the quasi-static electric field density by 

 

 
 

Ez =
V

z

V

h
 , (1) 

 

where h  denotes the (small) thickness of the piezoelectric layer. The components of 

the field density tangential to the layer vanish, Ex = Ey = 0 . An isothermal, uniaxial 

linear constitutive equation is set up between Ez , the respective component Dz  of the 

electric flux vector, and the axial strain xx  in the layer: 

 

 Ez = a*
xx + d*Dz  , (2) 

 

where a*
 and d*

 represent effective constitutive parameters. These parameters are 

obtained from the full set of three-dimensional constitutive equations by setting 

Ex = Ey = 0 , together with Dx = Dy = 0 , and inserting the result in order to replace 

the effect of the non-axial strains in Eq. (2). 

 Within an isothermal approximation, the mechanical constitutive equations are 

analogously written in the uniaxial form, 

 

 xx = c*
xx a*Dz  , (3) 
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c*
 again denoting an effective elastic modulus. Inserting Eqs.(1) and (2) into Eq.(3) 

yields: 

 

 xx = Y *
xx xx( )  , (4) 

 

where the piezoelectric eigenstrain is given by 

 

 xx =
a*

d*Y *

V

h
 , (5) 

 

with effective modulus of elasticity, 

 

 Y *
= c* a*2

d*  . (6) 

 

VISCOELASTIC SYMMETRIC SANDWICH PANELS 

The dynamic response of slender panels composed of three symmetrically arranged 

piezo- viscoelastic thin layers is studied. Utilizing a layer-wise theory and taking into 

account also a viscoelastic interlayer slip between core and faces derives the 

corresponding initial-boundary value problem. 

 Assuming three viscoelastic layers (i = 1, 2, 3)  with a common retardation time 

, the uniaxial stress-strain relation reads 

 

 
 

xx (x, zi;t) = Y *(zi ) xx (x, zi;t) + xx (x, zi;t) xx (x, zi;t) . (7) 

 
If the usual assumptions of thin laminates are employed, both in-plane and rotatory 
inertia can be neglected. Considering the free-body diagram of a three-layer panel with 

imposed piezoelectric strains, see Fig. 1, and applying the conservation of angular 

momentum to all three layers gives the relations 

 

 M1,x Q1 T1
h2

2
N1,x d = 0, d =

h1 + h2

2
 , (8) 

 

 M2,x Q2 + T1 + T2( )
h2

2
= 0  , (9) 

 

 M3,x Q3 T2
h2

2
+ N3,x d = 0  , (10) 
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Figure 1 – Geometry and stress resultants of a symmetric sandwich panel 

 

where T1, T2  denote the interlaminar shear forces per unit of length, and Qi  is the 

transverse shear force in the i-th layer. The bending moments Mi  are referred to the 

individual layer axes. Conservation of momentum in axial and transverse directions 

renders 

 

 N1,x +T1 = 0, N2,x T1 + T2 = 0, N3,x T2 = 0  , (11.1-3) 

 

 

 

Qi ,x
i=1

3

= μw  . (12) 

 

 

The mass per unit panel area is denoted by μ , the abbreviation ( ), x  defines the 

spatial derivative, and 
 
w(x)  stands for the transverse panel acceleration. 

 Summation of Eqs. (8)-(10) yield the global conservation of momentum 

 

 M ,x Q = 0  , (13) 

 

where 

 

 M = Mi
i=1

3

(N1 N3)d, Q = Qi
i=1

3

. (14.1, 2) 

 

In this mechanical model, all three layers are assumed to be rigid in shear. However, 

contrary to perfectly bonded laminates, viscoelastic interlayer slips, u1  between 

upper face and core, and u2  between lower face and core, are considered. The 

displacement field in the i-th layer is modeled according to a layer-wise Bernoulli-

Euler approximation, thus 
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ui

wi

=
ui

(0) ziw,x

w
, i = 1,2,3   , (15) 

 

where w  represents the transverse deflection, and the axial deformations ui
(0)  can be 

written as 

 

 u1
(0)

= u2
(0)

+ d w,x u1( ), u3
(0)

= u2
(0) d w,x u2( )  . (16.1, 2) 

 

The constitutive relations, when expressed by means of cross-sectional resultants, 

become 

 

 

 

Ni

Mi

=
Di 0

0 Bi

ui ,x
(0)

+ ui ,x
(0) ei

w,xx + w,xx + i( )
, i = 1,2,3   , (17) 

 

where Di  and Bi  are the standard extensional and bending stiffness, Di = Yi
* Ai , and 

Bi = Yi
* Ji ; the abbreviations Ai  and Ji  denote the layer's partial cross-sectional areas 

and moments of inertia, respectively. The cross-sectional means of the eigenstrains 

and imposed curvatures due to piezoelectrical action are defined as 

 

 ei =
1

Ai

xx dA
Ai

, i =
1

Ji

xx zi dA
Ai

. (18.1, 2) 

 

The relative horizontal displacement between two layers causes shear tractions at the 

interfaces, where a linear vicoelastic relation is assigned, 

 

 

 

T1 = k u1 + u1( ) = k d w,x +u2
(0) u1

(0)( ) + d w,x +u2
(0) u1

(0)( ) ,

T2 = k u2 + u2( ) = k d w,x u2
(0)

+ u3
(0)( ) + d w,x u2

(0)
+ u3

(0)( ) ,

(19.1, 2) 

 

where the parameter k  represents a constant slip modulus. For the sake of simplicity 

of the final initial-boundary value problem, the value of the retardation time, , is 

chosen to be common to that of the panel layers. Summation and differentiation of 

Eqs. (11.1) and (11.2) with respect to the axial coordinate x , and substituting Eqs. 

(18.1) and (18.2) together with the constitutive relations, Eq. (17), leads to 

 

 

 

N1,xx N3,xx

k

D1

N1 N3( ) + 2 k d w,xx + w,xx( ) k e1 e3( ) = 0 , (20) 

 

where, due to the symmetric layer arrangement, D1 = D3  has been considered. 
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Next, by means of Eq. (14.1) and Eq. (17), the force difference N1 N3( )  can be 

expressed as 

 

 
 

N1 N3 =
1

d
B0 w,xx + w,xx +

(0)( ) + M , (21) 

 

where B0  and 
(0)

 define bending stiffness and curvatures, respectively, of the non-

composite actions 

 

 B0 = Bi
i=1

3

, (0)
=

1

B0

Bi i
i=1

3

. (22.1, 2) 

 

Combining Eqs. (20) and (21) and considering Eqs. (13) and (14), the equation of 

motion, Eq. (12), can be expressed as 

 

 

 

w + w( ),xxxxxx
2 w + w( ),xxxx +

μ

B0

w,xx
2 μ

B
w = 2 ,xx , xxxx

(0)  . (23) 

 

In this formulation, both bending stiffness 

 

 B = B0 + 2d 2D1  , (24) 

 

and imposed curvature 

 

 =
1

B
Y *

xx
* z2 dA =

1

B
2D1 d e3 e1( ) + B0

(0)

A

, (25) 

 

are referred to the full composite cross-section. The parameter 

 

 2
= k B / (D1 B0 )   (26) 

 

defines an effective inter-laminar shear coefficient that allows to study also both 

limits 2  (perfect bond) and 2 0  (no bond), of the panel without numerical 

difficulties. 

 The solution of Eq. (23) depends on the initial conditions, the state at time 

instant t = 0 , and on the actual boundary conditions; see [3] for a compilation of 

classical boundary conditions. 
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ILLUSTRATIVE EXAMPLE 

In the following example, a simply supported panel with time harmonic imposed 

piezoelectric eigenstains is considered, assuming that the axial distribution is given by 

a Fourier sine-series expansion, 

 

 

 

xx (x, zi;t) = xx
* (x, zi )e

i t
= n

*(zi )sin n x( )ei t

n=1

, n =
n

l
, i = 1 . (27) 

 

The circular forcing frequency is denoted by , and the coefficients of the axial 

eigenstrain distribution, n
*(zi ) , are determined by the integral 

 

 

 

n
*(zi ) =

2

l xx
* (x, zi )sin n x( )dx

0

l

. (28) 

 

The complex frequency response function (FRF) is computed for the following 

piezoelectric eigenstrain distribution: 

 

 
 xx

* (x, z3) = xx
* (x, z1) = C( )

= const. , xx
* (x, z2 ) = 0 . 

 

In that specific case, the curvature terms of the individual layers vanish, compare Eq. 

(18.2), 

 

 i = 0 (0)
= 0 , (29) 

 

and the intensity coefficients of the eigenstain distribution according to the integral 

Eq. (28) result in 

 

 n
*(z3) = n

*(z1) =
4C( )

n
, n = 1,3,5,...  (30) 

 

The remaining driving term is of the form 

 

 (x,t) = Kn sin n x( )ei t

n=1

, (31) 

 

where the corresponding modal participation factors are given as 

 

 Kn =
1

B
Y *

n
* z2 dA = 2

D1 d

B n
*(z3) n

*(z1)
A

=
16

n

D1 d

B
C( ) . (32) 
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The FRF is derived by means of the eigenfunction expansion for the deflection of the 

simply supported panel, compare [1], 

 w(x,t) = Wn sin n x( )ei t

n=1

. (33) 

 

Inserting Eqs. (31) and (33) into Eq.(23), and comparing the coefficients of the series, 

finally leads to the non-dimensional complex FRF 

 

w (i ) =
Wn

C( )ln=1,3,5,.

=
16D1 d

n l B μ

2
n
2

n
2

B0
+

2

B n
2 1+ i( ) 2n=1,3,5,.

, (34) 

 

where the natural frequencies of the elastic structure have been introduced, 

 

 n
2
= n

4
n
2
+

2 μ n
2

B0

+
2

B

1

. (35) 

CONCLUSIONS 

The sixth-order initial-boundary value problem of flexural vibrations of sandwich 

panels composed either completely or in part of three piezoelectric viscoelastic layers 

with interlayer slip is derived. Piezoelectrically induced strains are interpreted as 

eigenstrains acting in a background panel without actuators. Within a numerical 

study, a specific load case of time-harmonically imposed piezoelectric sources, 

applied to the outer layers of a single-span three-layer panel, is considered. The 

corresponding complex frequency response function for the panel deflection is 

determined in series representation. 
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