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Abstract

A theoretical model is presented to predict the stabilitya dRijke tube from a Green’s
function analysis. The Rijke tube is modelled as an open-ended tubeawlockage
(compact compared with the wavelength) and a jump in cross-sdctora. Its Green's
function is calculated for certain source and observer positlonshe region near the
blockage the acoustic flow can be regarded as incompressit#éhenside of the blockage,
acoustic wave propagation is assumed. The velocity potentialseoihncompressible and
acoustic regions are matched by continuity of pressure and volumeXliwear heat release
characteristic (relating perturbations in heat release teetlu velocity) is considered.
Oscillations in the Rijke tube are modelled by an integral emuatvolving the Green’s
function. The growth rates are predicted from this integral tejuand given in terms of
properties of the heat release and of the Green’s function.

INTRODUCTION

We consider a Rijke tube with axisymmetric geometry; asisection between the
tube axis and the tube wall is shown in Figure 1. The ends are ogepressure
nodes just outside the tubejat /; and x=/, (Rayleigh end correction). There is a

blockage, a change of cross-sectional area fté@mnto A, and a jump in mean

temperature froml; to T,. The speed of sound jumps frog to ¢, due to the
temperature jump.
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Figure 1 - Rijke tube with a point source @& Xq

The jump in mean temperature is caused by a steady heat éoarked by a solid
grey line) which is situated near the downstream edge of #meflholder, at
x=/+ h; the unsteady heat source (marked by a broken grey linedumed to be
just downstream of this point, at= Xy .

THE GREEN’S FUNCTION

An important component of our theoretical model is the exact acoGs&en’s
function G(x,x',t,t'). This is the velocity potential in the tube at positiorand time

t, created by an impulsive point source at positibrand timet’'. The exact Green’s
function is the solution of

2
L 26 = 5(x-x)8(t-1), (1)
c” ot

inside the tube. It is zero at= /¢, and x=/,; this neglects losses from the ends. It

has a normal derivative equal to zero on all internal surfaces atie: dube axis; it
also satisfies the conditions of reciprocity and causality.

For the calculation of the exact Green’s function we divide the tgbanto three
regions: a hydrodynamic region which surrounds the flame holder anddeustic
regions (one upstream and one downstream) on either side of the mairody
region. In the hydrodynamic region the field is three-dimensiohaik region is
small compared with the wavelength of low modes, so the acoustiomuain be
treated as incompressible in this region. In the acoustic regioadjeld is one-
dimensional and acoustic waves are assumed to propagate in theses.rdhe
velocity potentials in the three regions are matched at théaioésrbetween them by
assuming continuity of pressure and volume flow across the interfaces.

We have calculated the analytic approximation to the Green’sidanédcussing on
the simple case where the source and the observer are in therdamnacoustic
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region. This involved solving the one-dimensional frequency-domain version of

equation (1) in the acoustic regions, solving Laplace’s equdﬂ%@zo in the
hydrodynamic region, and matching the solutions at the interfacdsse§uent
integration with respect to frequency gave the exact Grden®ion in the time
domain. This has the form

G(x X, t-t)= i (% X)H(t= t)sinwy, (= t), (2)
n=1

where wy, are the eigenfrequencies of the Rijke tulgg, are the corresponding

amplitudes, andH is the Heaviside function. This Green’s function behaves as
expected from an impulse response of a finite system: itastdore the impulse (at
t =t') and a superposition of eigenmodes thereafter.

The eigenfrequencies, are the roots off (w) =0 (see [1]), where

f(u)):i —COSWT; sirmr2+&& SimwT cosxﬁiw cast, co¥ |, (3)
e Ap € C2
. =0 U=ty : « . I
with 11 = andt, = . Lg is the “blockage integral”; this depends on the

C2
geometry of the flame holder and has to be caledlaumerically (see [4])Lg can

be thought of as the length of an incompressibiglaig which fills the gap between
the flame holder and the tube wall and oscillatesltel to thex -axis.

The Green’s function amplitudes in (2) are giver(dse [2])

Ay C(x0n) D(X,wn)

gn(x, X)=2 ,
" Ay wy, f'(wp)

, (4)

where f' is the derivative of the functiorf (w) in (3); C and D give the x-
dependence and - dependence, respectively, 9f

C(x W)= SinM, (5)
C2
D(X,w) = cos¥X =1 sinty + Ay Cp XX =0) coaTy +
C2 A2 q C2
+&£mcosw COSVT} - (6)

Ay € Co
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THE GOVERNING EQUATIONS FOR THE STABILITY PROBLEM

The velocity potentialp in the Rijke tube is governed by the nonhomogegewave
eqguation (see [3] p.508),

1 62(p ach y-1
S5 5= d(x1), (7)
c? ot ox? c?

where g is the fluctuating part of the rate of heat redepsr unit mass of air (from

the heat source to the air), agds the specific heat ratio; the speed of soarndkes
valuesc; in the downstream region armg in the upstream region.

In our configuration, the heat release is conceedrat the axial positiorx;. We

assume that its heat release rgtedepends linearly on the velocity fluctuatioh at

Xg and that there is a time lagbetween these fluctuating quantities,

2
. Cc
q(x ) =17 GUOEDHX ). (8)
This heat release characteristic is known to afgplyot gauzes (see [3] p. 511) and to

some simple fIamesCB is a measure of the strength of the heat soUBg@(O).

With u' = g(p and equations (7) and (8), we obtain the govegraguation
X

iy A S () ®)

Instead of solving this equation directly, we wiéirive an integral equation involving
the Green'’s function.

To this end, equation (9) and the one-dimensiomah fof (1) are written in terms of
the source variableg’ andt’; (1) is multiplied by@(x,t'), (9) by G(x, X, t-t), and
the resulting equations are subtracted. This gives

@, 1)3(x— X)3(t- f)+CBGM6( %= x)=

2 2 2
:C_lz[(pa G_0 (pJ_[(p G achJ 10)

R X2 ox?2
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This is integrated with respect t0 (from /4 to /,) andt’ (from O tot). The result

can be simplified (using the boundary conditionshat tube ends and causality, see
[2]) to give an integro-differential equation fdret velocity potentialp,

ox0=-Gp | 60x%p & L0 | (11)

t'=t

where initial conditions of zero initial velocitynd acceleration have been assumed
throughout the tube. This can be turned into aegiral equation for the velocity by
differentiating with respect tx. Also, the integral can be made to start'at0 by
use of the Heaviside function. Evaluationxat x; leads to an integral equation of

the Volterra type for the velocity at the heat seur

w vy HE-T)ug(t -7t (12)

x':xg

4 0=-C I

where the abbreviatioug ()= u’(xg, t) has been introduced.

SOLUTION OF THE GOVERNING INTEGRAL EQUATION

We assume thatly is a superposition of modes for T with amplitudesuy, and

complex eigenfrequencie¥,, = Q ,+iA , (Q,, is the real eigenfrequency of mode
m in the tube with unsteady heating),

00

ug(=>" (ume_iwmt + u*mé‘“*m‘j. (13)

m=1

We focus on the imaginary pafi,,, which indicates whether mode is stable
(Ap, £0) or unstable 4, > 0).

In order to obtain an equation fdy,, from (12), several steps have to be performed.

They involve use of (2) and (13), application of thaplace transform with respect to
time to turn the integral in (12) into a simplegelraic expression, inverse Laplace
transform back into the time domain and comparigbthe coefficients of certain
functions of time. These steps are too lengthyhtawshere, but details can be found
in [2]. The following result is obtained for theraplex eigenfrequencie¥,,,,
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agn(xg Xg) e ¥ mt
R -Wh

m=1,2,3,.. (14)

1= cﬁi

These are coupled equations involving the complggnérequencies of all modes.

An approximate analytical solution fd¥,, can be derived from the assumptions

Q= w, for n=m, but not fornz m (steady and unsteady case have similar real

eigenfrequencies) and\},, <<Q , (small growth rates). Then the denominator of the
iWmt

whe

2 _w?
wh— ¥
dominates over all the others in the sum. This samthen be approximated by the
dominant term to give

term in (14) is small fom = m, but not forn# m, and thus thenth term

NJmT

agm(Xg’ Xg) oom

5 =0. (15)
wm_qu

1+Cp

For the lower modes, it is reasonable to assume [tHg,T k<1, so that the

approximation d¥ml = 14 Wt can be made. (15) can then be turned into a

quadratic equation fow,,, which has the following solutions:

{HCB magm(xg, Xg) \/(Cﬁ magm( ¢] g))2+4(w !+ Gy 0 gnf Xg xd)
(16)

If the term under the square root is negative, réwd part of W, is zero. This
describes the case where the velocity rises expatignwithout oscillating. We
ignore this case here and assume that the squatréeran in (16) represents the real
part of W,,. Then

99m(Xg, Xg)

1
Amzlmwm:ETCBoom ™ (17)

A, has four factors, three of which are posititeGg, wy,). Thus the sign ofy, is

determined by the sign of the fourth facterm(a—gg) and this depends on the
X

position Xg of the heat source along the tube axis.
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NUMERICAL RESULTS

. . agm(xg! Xg) . .
The derlvatlvea— was evaluated numerically for a tube with thedaihg
X
properties:
L =1m (tube length)h=0.03m, ¢; =-0.014 m, /, =1.014 m,
Az - 1.128, Lg =0.0256 m,
Ay

T, = 288 K (room temperature)l, = 488 K,
c,=342ms? ¢, =446 mst,

The source position(g was increased in small steps @001L and covered the
range 0<xg <L.In order to keep the distance between the steadynsteady heat

source fixed at0.01L, ¢ (see Figure 1) was also increased, in such a Wwaly t
l=Xg = h—-0.01L. As Xg increased, the interface at h between the cold and the

hot region in the tube moved towards the endl athus the cold region increased in
size, while the hot region decreased. This led tooatinuous decrease in the

eigenfrequenciesw, decreased from334 7 to 1031$7, and w, from 2668 $*
to 2066 5.

agm(xga Xg)
X

fundamental modeng=1); the grey curve is for the second moda=2). The

curves indicate that mode 1 is unstable in thegdhg Xg < 0.440L, and mode 2 in

the rangeg) < Xg < 0.205L and0.424L < Xg < 0 707L.

Figure 2 shows as a function ofxy. The black curve is for the

These predictions are in line with the well-knowservation that the fundamental
mode of a Rijke tube is unstable if the heat soisde the lower half of the Rijke
tube. The predicted stability behaviour for theasetmode has also been observed.
Of course, the same predictions have been obtamprevious studies from simpler
theories, for example from a classical control wwdu analysis, where balance
equations for mass, momentum and energy acrodsetitesource are formulated and
analysed by an eigenvalue approach. Such approagtes any vorticity effects and
offer no scope of modelling these.

Vortices are inevitably generated at the flame @ololy the flow past it. These can
interact with the acoustic field and may affect 8tability behaviour of the Rijke
tube. The advantage of our approach is that iteageneralized to include vorticity.
This requires knowledge of the exact Green’s fumctor the case where the source
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and observer position are in the hydrodynamic regiorrounding the flame holder.
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Figure 2 - Derivative with respect to of the Green’s function amplitude

CONCLUSIONS AND OUTLOOK

A Green’s function approach has been used to gréadec stability behaviour of a
Rijke tube with a simple heat release characteristine predictions are in line with
the well-known observation that the fundamental enoftithe Rijke tube is unstable if
the heat source is in the lower half of the tuddsGreen’s function approach offers
scope to analyse Rijke tubes and Rijke burners \aithvariety of heat release
characteristics. Also, the approach can be extertdedhvestigate whether the
vorticity generated at the flame holder has ancéfba the stability behaviour.
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