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Abstract 
Since fiber-reinforced composite materials has high specific strength and stiffness, an 
application of fiber reinforced composite materials to rotating disks can enhance the 
performance of machinery by increasing the dynamic stability and saving the driving energy. 
There have been few works on the vibration characteristics of rotating multidirectional 
laminated disks made of fiber-reinforced composite materials. Most of the previous researches 
have been confined to single lamina disks. When a disk rotates, the centrifugal force causes the 
in-plane loads that affect the vibration characteristics of rotating disk. In this paper, the exact 
expressions for the in-plane loads acting on rotating cross-ply laminate disk are presented. The 
vibration equation of rotating cross-ply laminate disk is solved by Galerkin’s method. In the 
numerical examples, the natural frequencies and critical speeds of the rotating disks are 
discussed for various cross-ply ratios. 

INTRODUCTION 

Vibration of rotating disks is a major concern in data storage devices such as optical 
and magnetic disk drives as well as in industrial machines such as turbine rotors and 
circular saws, and so on. The demand for higher data transfer rate in computers causes 
a drastic increase of rotating speed in data storage disks. However, the rotating speed 
can be limited by the dynamic instability at the critical or flutter speeds. 

As technology improvements in current optical and magnetic disk storage 
systems are saturating, Holographic Digital Data Storage (HDDS) is considered a 
promising technology that makes possible storage densities that exceed the barriers of 
traditional magnetic and optical recording [1]. In addition to some requirements for 
multiplexing method and storage material placed on the holographic media, the media 
must have dimensional and dynamic stability. Fiber reinforced composite materials 
have high specific modulus as well as very low coefficient of thermal expansion (CTE) 
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in the fiber direction. The longitudinal CTE of some carbon/epoxy composite materials 
is negative. An application of fiber reinforced composite materials to data storage disks, 
especially to HDDS disk, in addition to rotating machinery, is expected to enhance both 
the vibration characteristics and the thermal stability. 

The vibration analysis of rotating isotropic disks has attracted much attention 
since Lamb and Southwell [2] dealt with this problem. However, there are not many 
papers [3-7] on the vibration characteristics on rotating polar orthotropic disks. No 
work has been reported, to the author’s best knowledge, on the vibration and critical 
speed of rotating laminated composite disks 

In the present paper, the vibration analysis of rotating laminated composite disks 
is performed to calculate the natural frequencies and critical speeds. The closed-form 
solution for stress distribution of rotating laminated composite disk is found. Also, the 
dynamic equation of the disk is formulated. The approximate solution is obtained by 
Galerkin’s method. Numerical results are given for Glass Fiber Reinforced Plastics 
(GFRP) cross-ply disks with a diameter of 120mm. The effect of cross-ply ratio on the 
natural frequencies and critical speeds is studied. 

GOVERNING EQUATIONS AND SOLUTION METHOD 

Constitutive Equation of Laminated Composite Disk 

A composite laminate can be composed of as many layers as needed, of which fiber 
orientation could be arbitrary. One of the simple ways to make up a laminated 
composite disk is to stack the radially-reinforced and circumferentially-reinforced 
laminae as shown in Fig. 1. Laminates containing plies oriented only at 0° and 90° are 
called cross-ply laminates. The stress-strain relations for a layer in a laminated disk 
under plane stress are 
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where the subscripts 1 and 2 denote the fiber and transverse directions, respectively; Q  
is the reduced stiffness matrix [8]. 

Normally, the lamina principal axes (1, 2) do not coincide with the loading or 
reference axes. The stress-strain relations in Eq. (1) can be transformed into the disk 
body axes ),( θr  which is fixed at a disk as shown in Fig. 2: 

 
 )()( θθ rr εQσ =  (2) 
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where the reduce transformed matrix Q  is obtained by  
 
 

T1 −−= QTTQ  (3) 
 
where the transformation matrix T [8] is defined for the fiber orientation angle β  
measured positive counterclockwise from the r -axis as shown in Fig. 2. 

The displacements of the disk in the coordinate ),( θr  can expressed by 
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wzuu rr ∂
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where the subscript 0 denotes the mid-plane. 

The strain vector )( θrε  in the polar coordinate are composed of the strain vector in 

the mid-plane 0
)( θrε  and the curvature vector )( θrκ : 

 
 )(

0
)()( θθθ rrr zκεε +=  (5) 

 
Integrating Eq. (2) with the expression for strain in Eq. (5) gives the force 

resultants )( θrN , and integrating Eq. (2) multiplied by z  yields the moment resultants 

)( θrM : 
 
 0

)()()( θθθ rrr εAN = ,    )()()( θθθ rrr κDM =  (6) 
 
where )( θrA  and )( θrD  are the extensional and bending stiffnesses, respectively, in the 
coordinate ),( θr ; and their components can be defined as 
 

 dzQA
h

h ijij ∫−=
2/

2/
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h
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22/

2/∫−= . (7) 

 

 
 

Fig. 1 - Laminated composite disk. 
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Fig. 2 - Coordinates and geometry of rotating disk.
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Dynamic Equation of Motion 

When a disk rotates in a constant speed Ω , the centrifugal force produces the in-plane 
force resultants rN  and θN . The dynamic equation of a rotating symmetric laminate 
disk in the coordinate ),( θr  may be expressed in the form 
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where ),,( trww θ=  is the transverse displacement of the point ),( θr  at time t ; ρ  is 
the density of the disk; ),,( trqq zz θ=  is the distributed load in z -direction. 

The force resultants rN  and θN  in Eq. (8) are determined from the equilibrium 
equation in the r -direction: 
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With 0)( =∂∂ θ   for an axisymmetric situation, the force resultants may be derived 
from Eqs. (4) and (6): 
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Along with 0=∂∂ θθrN , substituting the resultants in Eq. (10) into Eq. (9) yields the 
differential equation: 
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where rrAA /2

θθµ = . Since the solution of Eq. (11) depends on the value of 2µ , we 
should consider two cases: 92 ≠µ  and 92 =µ . 

The boundary conditions are expressed for a disk fixed at inner radius b  and free 
at outer radius a  as follows: 
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 0)( =bur ,     0)( =aNr  (12) 
 
The solution satisfying the boundary conditions is given by: 
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where 
 rrr AA /θν =  (14.a) 
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Then, the force resultants necessary in Eq. (8) may be obtained by substituting Eq. (13) 
into Eq. (10). 

Method of Solution 

The eigensolutions of Eq. (14) for free vibration may be sought by assuming 0=zq  
and 
 
 tienrRtrw ωθθ )cos()(),,( =  (15) 
 
Substituting Eq. (15) into Eq. (8) with 0=zq  changes the partial differential equation 
into an ordinary differential equation, of which an approximate solution, then, is sought 
of the form: 
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Applying Galerkin’s method, the coefficients kq  will be determined from the 

system of equations: 
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where L is the linear operator for the ordinary differential equation. 

The system of equations may be written in the matrix form: 
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 0qMKK =−+ )( 22 ωΩ Ωb  (18) 
 
where bK  is the stiffness matrix due to bending; ΩK  is the stiffness matrix including 
a gyroscopic effect; M is the mass matrix. 

The ground-based observer sees two different natural frequencies of single mode 
known as a mode splitting. Those are the forward and backward frequencies, fω  and 

bω  given by 
 

 Ωωω nf += ,     Ωωω nb −= . (19) 
 
The critical speed can be determined when the backward frequency bω  vanishes. At 
this situation, the propagation speed of a backward traveling wave in the rotating frame 
is equal to the disk rotation speed. 

The accuracy of the solution of Eq. (18) depends on the choice of the functions 
)(rfi . The orthogonal polynomial functions proposed by Bhat [9] will be used to have 

a stable solution. Koo [7] successfully applied these functions to the lateral vibration of 
rotating polar orthotropic disks. 

RESULTS  

The rotating disks are assumed to have the same dimensions as those of typical optical 
storage media with b  = 15 mm, a  = 60 mm, h  = 1.2 mm. To study the effect of the 
material property on the natural frequencies and critical speeds of the rotating disks, a 
typical GFRP(E-glass/Epoxy) is chosen and its material properties are given by  
 

1E  = 38.6GPa, 2E =8.27, 12G =4.14, 12ν =0.26, ρ =1800 kg/m3 
 

Since a single lamina disk of orthotropic material may fail in matrix at a low level 
of stress or impact, a multidirectional laminated disk can be a more practical design. 
While [0/90]S and [90/0]S disks have the same ijA ’s, their ijD ’s are different. The 
natural frequencies of the [0/90]S and [90/0]S disks are obtained at various rotating 
speeds from which critical speeds are determined. 

The frequency-speed diagram of the [0/90]S disk is shown in Fig. 3 and that of the 
[90/0]S disk in Fig. 4. The lowest six modes of the disks in non-rotating do not have a 
nodal circle. A close examination reveals that the natural frequencies of the [0/90]S 
disk are higher in modes (0,0) to (0,2) and are lower in modes (0,3) to (0,5) than those 
of the [90/0]S disk when the disks are not rotating. This is because rrD  is higher than 

θθD  in the [0/90]S disk, and vice versa in the [90/0]S disk. It can be said that the lower 
three modes are affected by the magnitude of rrD  whereas the higher three modes are 
dependent on the value of θθD . The lowest critical speed of the [0/90]S disk is around 
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15,293 RPM in mode (0,3) while the second one is around 16,979 in mode (0,2). The 
lowest critical speed of the [90/0]S disk is around 14,975 RPM in mode (0,2) like the 
polycarbonate disk. This can be explained by the relationship between the natural 
frequency and bending stiffness. 

To study the effect of the amount of 0° layers on the critical speed of cross-ply 
laminate disk, the cross-ply ratio is defined as 

 

 
j
iM =  (20) 

 
where i  and j  are the total thickness of 0° and 90° layers, respectively; they become 
the number of the layers if all the layers have an equal thickness. The cross-ply 
laminate disks studied in this paper have a stacking sequence [0i/90j]S and [90i/0j]S 
where i  and j  are the integer numbers from 0 to 10 with 10=+ ji , keeping the disk 
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Fig. 5 - Critical speeds of [0i/9010-i]S disk. 

  mode (0,2);  mode (0,3). 
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Fig. 6 - Critical speeds of [90i/010-i]S disk. 

  mode (0,2);  mode (0,3). 
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Fig. 3 - Frequency-speed diagram for 

[0/90]S disk. 
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thickness h  to 1.2 mm. 
The lowest critical modes of the [0i/9010-i]S disks occur in mode (0,2) for 3≤i  

and in mode (0,3) for 4≥i  as shown in Fig. 5. This result is due to the fact that rrD  is 
greater than θθD  near 2=i . Fig. 6 illustrates the lowest critical modes of the [90i/010-i]S 
GFRP disks which are modes (0,2) for 8≤i  and mode (0,3) for 9≥i . The same 
explanation can be applied to this phenomenon. 

CONCLUSIONS 

In the present paper, the vibration analysis of rotating laminated composite disks is 
performed to calculate the natural frequency and critical speed. The closed-form 
solution for the stress distribution of rotating laminated composite disk is found.   
Dynamic equation of rotating laminated composite disk is formulated. The 
approximate solution is obtained by Galerkin’s method. 

The numerical results show that the critical speeds of the laminated composite 
disk are strongly dependant on the ratio of the bending stiffnesses in radial and 
circumferential directions. Especially, for the cross-ply laminate disks, the [0i/90j]S 
disks have higher critical speeds at the cross-ply ratio less than one whereas the 
[90i/0j]S disks are more stable over the cross-ply ratio of one. 
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