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Abstract:  
The paper presents an intricate mathematical formalism useful in the kinematic and dynamic study of 
the kinematic chains in the structure of the industrial and biological robots.  
The presented analysis method completes a very proficient computational system of the mechanical 
systems from the structure of the robots, especially of the biological robots. This system contains the 
mathematical methods [1], [5], useful in the kinematical and dynamical study, in the precision control. 
This formalism is based on the Newton Euler method, completed by the Lagrange multipliers and 
adapted to the complex study of the mobile spatial systems.  
The hexapod robot that constitutes the object of this paper was obtained through the structural, 
kinematic and dynamic study of a hexapod insect, from the Blatodea zoological order. The processing 
of the dynamic models on a computer and the three dimensional simulation of its behavior offers the 
necessary information to proceed with the dynamic study on the experimental model 
 
 
 

1. INTRODUCTION 
 
The methods used for the kinematic and dynamic analysis of the spatial mechanism, 
in particular, are many and varied.   
Nevertheless, we consider that the possibility of processing the obtained 
mathematical models and especially the interface that they can offer for modeling and 
simulating the mobile system functioning in real, practical conditions are important. 
In the papers [3], [7], we have studied some aspects regarding the structure and the 
kinematics of a hexapod walking robot. The structural and kinematical models had as 
a source of inspiration the movement from the living world namely the movement of 
the hexapod insects from the Blatodea order. 
 
 



2. Kinematic Modeling [3 ] 
  
 It is considered a kinematic linkage made by “n” rigid solids, connected through “n-
1”   kinematics pairs (fig.1). 

 
 

Fig. 1. The  kinematic linkage 

 
We make the following notations: 
- ( ), ,i i i iT i j k  - the reference frame attached to the element i, with unit vectors 

base ( )iiii kjiW ,, ; ni ,1= . 
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iii kjiT ,,0  - the global reference frame with unit vectors base ( )0 0 00, ,W i j k ; 

-  - the relative translation vector between the elements i-1 and i, with respect to 
existed  trihedral, if there is a prismatic pair  between elements i-1 and i; (

i
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which begins the relative translation, ( ni ,1= ); 

- iS - the position vector of M i, in proportion to , attached to element i. iT
The position vector of Mn point with respect to the global reference frame is given 

by the relationship: 
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We introduce the coordinate transformation matrix from a reference frame to another.  
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Introducing the relations (3), (4) and (5) in relation (1) we obtain: 
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3. THE MOVEMENT EQUATIONS IN 

NEWTON-EULER FORMALISM 
 
The movement equations in Newton-Euler formalism are:            

        (7) [ ] ,QqMq aT 0=−⋅⋅δ

where: 
 M is the mass matrix; 
 q- the generalized coordinates vector; 
 Qa- the active generalized forces matrix. 
The mechanism configuration leads to an equation system: 
 

( ) .t,q 0=φ         (8) 
 

By differentiating the equations (8) we get: 
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where: - the evaluated Jacobean for the q coordinates which satisfy the equation  
(8); 

qj

           - the virtual displacements. qδ

According to the theorem of Lagrange multipliers the movement equation becomes: 
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By differentiating the equations (13) with respect to time we get: 
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By differentiating the equations (8) with respect to time we obtained: 
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We obtain the equations: 
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By combining the equations (12) and (15) we get: 
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where: M = diagonal (m1, m2,...,mn) is the mass matrix; 
λ - Lagrange multiplier 

 
4. THE COMPUTATIONAL CALCULATION 

OF THE LIAISON FORCES 
 
 4.1 The mathematical modeling [1] 
 
 We consider the reference systems: Ri' and Rj' solidary to the elements i and j, 
Ri" and Rj" centered in the joint K and solidary to the elements i and j (fig.2.2). 
The torque of the liaison forces has the components F"k and T"k, expressed through 
the orthogonal systems Ri" and Rj" made up of three axis.  
The components of the liaison forces torque in the kinematic couple k are:  
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 [  - The transformation matrix of the coordinates when converted from system Ri" to system Ri'. ]iiR ′′

 



 
4.2 The fifth class rotational joint [ 1 ] 

 
 For the rotation coupling, the torque of the forces reported to the Ri" system 
is: 
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4.3 The fifth class translation joint [ 1 ] 

 
 We will mathematically model the existence condition of the translation joint 
in order to evaluate the corresponding Jacobean. 
The torque of the liaison forces from the translation joint, with respect to the axis 
system, will have the following components: 
 

[ ] [ ] [ ] [ ] ( ),( , )
'' '

T T tr i jtr i j
i ii oi oi iF R A R A w λ′′ ⎡ ⎤= ⋅ ⋅ ⋅ ⋅ ⋅⎣ ⎦ ;   [1]          (19)                           

                 

     ( ) [ ] [ ] [ ] [ ] [ ]
[ ] ( ) .'w

A'w,ASArrT

j,itr
i

T
ij

T
j

T
ij

TP
joi

T
ij

)j,i(tr
i

λ⋅⋅

⋅⎥⎦
⎤

⎢⎣
⎡ ⋅⋅′+⋅−=′′     [1]          (20)               

 
The equations (19) and (20) give the components of the liaison forces torque from the 
translation couple. 

5. APPLICATION 
 

 The paper presents the dynamic movement of the left anterior leg, from the 
experimental model (fig.2). This model strictly observes the structure of the 
equivalent mechanism of the hexapod insect, scale 20:1. 
For the dynamic analysis, we assume that the geometric parameters and the 
components of the inertia torques are already known, following the determination of 
the variation laws of the generalized coordinates and of the liaison forces torques in 
the kinematic couplings.  
 For the inverse dynamic analysis we used as input data the variation laws of the 
generalized coordinates, which define the motor joints movements and the variation 
laws of the generalized forces.  
We studied the requirements in a dynamic regime of the liaison forces from the 
kinematic joint of the hexapod mechanism. 
The transformation matrices of the coordinates are: 
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Fig.2 The model of the left fore-leg 

 
The base changes are defined as follows: 
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The position of the point FS in the reference system solidary to the pronot is: 
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We determine the coordinates of the mass centers of the kinematic elements, reported 
to the reference system linked to Cp. 
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We identify the equation system which describes the kinematic configuration of the 
mechanism. 
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The system is to be differentiated (26), to identify the Jacobean [ ]18 24qJ ×  , 
reported to the variables x1, y1, z1,q1, .. x6, y6, z6,q6. The mechanic masses and inertia 
moments are introduced to define the matrix of the masses M. 
The system of differential equations are formed and solved numerically (16), using 
the programs Maple and MATLAB.      
  
 

 
Fig.3. The experimental model          Fig.4 The dynamic model of the hexapod                                       

mechanism 
 
 The experimental model in figure 4 will be equipped with sensors for 
researches in a dynamic rating. The experimental model follows accurately the same 
structure and geometrical-kinematic parameters that characterize the walking process 
of a hexapod insect. 

6. Processing the mathematical models 
 
 The paper presents a part of the variation laws of the kinematic parameters 
and of the liaison forces in the robot’s joints.  
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Fig.5 Speed for element 6                               Fig.6 Angular speed for element 6 

 



Fx Fy Fz |F| (N) vs. time (s)

-0.5

0

0.5

0 0.1 0.2 0.3 0.4   

Tx Ty Tz |T| (N mm) vs. time (s)

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4  
Fig.7 Liaison force variation F21                           Fig.8 Moment variation in coupling As

 
7. CONCLUSIONS 

 
 The Newton-Euler formalism, completed by the method of Lagrange 
multipliers and the method of kinematic studio, presented in the first part of the paper, 
led to mathematical models with a flexible character, easy to repair and to implement 
on the computer.   
The soft which was elaborated to process these models allows the movement analysis, 
for a movement sequence, in varied conditions (moving on horizontal ground in a 
straight line, in a curve etc).   
We have designed an interface between the results of the numerical processing and a 
modeling and three-dimensional simulation program (NISA), in order to validate the 
mathematical models. 
By modeling and simulating the functioning of the experiment virtual model, we have 
obtained the necessary data for equipping the experimental model in order to operate 
and control the movement in a dynamic regime.   
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