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Abstract 
When complex orthogonal polynomials (OP) are used in modal identification in frequency 
domain, there are two concerns, transforming coefficients between based OPs and monomials, 
and computing polynomials. First, the leading term coefficient of OPs usually blasts 
exponentially as the order increases, so is the diagonal element of the transfer matrix. This can 
be contributed to the fact that the orthogonal relationship among the chosen OPs is over the 
frequency band [0,1]. By examining the recursion of Legendre polynomials, mapping the 
original frequency vector into [0,2] can efficiently avoid the aforementioned exponential trend. 
Moreover, a numerically empirical formula of frequency mapping was proposed for sub-band 
fitting.  

INTRODUCTION 

The essence of modal parameters identification is curve fitting. Rational fraction 
polynomial (RFP) fitting is a frequency domain method. Before RFP fitting, the 
frequency vector is usually normalized, or rescaled, that is, it is mapped into a standard 
band to render a better numerical condition. Assuming that the frequency band before 
mapping is [ωL, ωH]. Two mappings are described in literature. One, the upper 
boundary after mapping is 1, that is, [ωL, ωH] is mapped onto [ωL/ ωH, 1][10]. Another 
is mapping [ωL, ωH] into  [2ωL/(ωL+ωH), 2ωH/(ωL+ωH)][1; 8].  

Direct RFP fitting is called the Levy method[7], but its numerical condition is very 
bad for a high order system. To avoid ill condition in modal identification, however, 
orthogonal polynomial (OP) series are deliberately chosen as base functions[9-11]. 
This necessitates transforming between coefficients based on OPs and coefficients 
based on monomials. Recently, Chen et al[4] pointed out that this transform is 
somewhat difficult, and diagonal entries of the transfer matrix blast as the order 
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increases. This has two potential malignancies, deteriorating the transform precision 
and exaggerating the error in generating the OP.  

In this report, properties of the transitional matrix will be investigated. It is found 
that the exponential blast of diagonal entries is due that the upper boundary of the 
frequency vector is mapped to 1. Legendre polynomials is the asymptotic of the 
Forsythe polynomials[6]. By examining the recursion of this polynomial, authors find 
that mapping frequency vector into [0,2] can avoid the aforementioned exponential 
trend efficiently. Concerning the sub-band fitting, a numerically empirical formula of 
frequency mapping was proposed.  

FITTING BASED ON MONOMIALS AND ORTHOGONAL 
POLYNOMIALS 

For a RFP model, both the denominator and numerator are complex polynomials with 
real coefficients as follows: 

2
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Direct fitting the model like Eq(1) is a special case of the Levy method[3; 7], with the 
denominator being a constant 1. It is easy to show that the normal equation is as 
follows, 

}{}]{[ fA =γ                                                           (2) 
Here {γ}={γ0, γ1,…, γn,}T is the unknown vector to be determined. [A] is (n+1)×(n+1) 
matrix, and the element ak,l is as follows 
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Here, N is the number of discrete frequency points. κ is a nonnegative integer. ωi is the 
discrete frequency, and is distributed uniformly in an interval [ωL, ωH]. Denoting the 
frequency interval ∆ω=(ωH-ωL)/(N-1), then ωi=ωL+(i-1)∆ω. 

In Eq(2), {f}={ f0, f1,…, fn}T  is the right hand side vector, and the entry fk is 

)~0(    
12           )1(

2               )1(

1

2/)1(

1

2/

nk
kh

kh
f

I
i

N

i

k
i

k

R
i

N

i

k
i

k

k =

⎪
⎪
⎩

⎪⎪
⎨

⎧

+=−

=−
=

∑

∑

=

+

=

κω

κω
         (4) 

Here hi = hi
R +j hn

I is the known or measured data at ωi. 
The matrix A  in Eq(3) has a close relationship with the notorious Hilbert matrix[5; 

14]. Thus, OPs are deliberately chosen as base functions [9-11] This necessitates 
generating OP series pk(s), k=0~n. The generation procedure was provided in several 
references, however, the following looks more compact, 
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Here, ϕk(ω) and ψk(ω) are two auxiliary polynomial function series. νk is a recurrent 
generating parameter determined by concisely 
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where W(ω) is a weight function. In some references, both ψk(ω) and ψk+1(ω) occur in 
the formula of νk. This is not necessary. According to the orthogonal property, Eq(6) is 
easy to be obtained. 

   After estimating the coefficient vector {c}={ c0,  c1,…,  cn,}T based on the above 
OPs, we need transferring {c} back to the coefficients vector {γ} based on monomial. 
As shown in [4; 13], however, if this transform is expressed in term of recurrent 
generating parameters of OPs, it looks rather sophisticated. Nevertheless, the transform 
can be readily implemented by the coefficients matrix of OPs. 

We introduce the transitional matrix 
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Here, ϕk,l is the coefficient of the term ωl of the real polynomial ϕk(ω), and pk,l is the 
coefficient of the term (jω)l in the OP pk(jω). Both of ϕk,l and pk,l are pure real numbers. 
Either ϕk,l or pk,l can be recorded during generating OPs recurrently. 

The transform between two coefficient vectors {γ} and {c} is as follows 
 }]{[}{ cΘγ =                                                          (8) 

Since ϕk,l is recorded during generating Ops, this transform can be realized without any 
problem. Noting that [Θ] is an up-triangle matrix. Moreover, this up-triangle only 
consists of half nonzero elements. These facts can be taken into account to save 
memory. 
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Even though coefficients matrixes of OPs [Θ] are recorded already, the efficient 
way to compute sampling matrixes [P] and [Q] in[4; 13] is recurrent computation by 
Eq(5). This is because [P] and [Q] cover data sampled from each order OPs.  

With an OP base of Eq (5), the normal equation parallel to Eq (2) can be formulated. 
Now the normal matrix is an identical matrix, and the solution is just the right hand side 
vector. 

ASYMPTOTIC ANALYSIS 

Chen[4] found that diagonal entries of the matrix [Θ] usually increase exponentially as 
the order increases. This has two potential issues. One is, as stated in [4], the blasting of 
diagonal elements of [Θ] may deteriorate the transform precision of Eq (5). The other is 
the fact that the leading term become larger and larger will likely increase the 
possibility of the erroneous operations during generating OPs, such as adding a larger 
and a small number, the subtractive cancellation of 2 larger numbers. In addition, the 
round error occurring in computing an OP of lower order may be boosted in computing 
an ensuing high order OP. 

An immediate idea is rescaling ϕk(ω) to make the leading term coefficient 1. 
However, the normal matrix will be not an identical matrix any longer, although it is 
still diagonal. Its diagonal entry sizes will increase exponentially as the order increases. 
This is not favourable. In fact, this does not solve the problem, but shift the 
predicament from the leading term to the normal matrix. 

To unravel this exponential trend, we turn to the asymptotic case. Both of real 
functions ψk(ω) and ϕk(ω) are OPs series, if the fitting is taken over two symmetrical 
bands [ωL, ωH] and [-ωL, −ωH], and the weight function is also reflected from [ωL, ωH] 
to [-ωL, −ωH], as W(ωi)= W(-ωi ) for i=1~N. For the discrete case, they are named after 
Forsythe polynomials[6]. If we further limit [ωL, ωH]=[0,1], W(ωi )≡1, and ∆ω→0, 
then ϕk(ω)s are so-called Legendre polynomial L k(ω)s. The normalized L k(ω) has the 
explicit expression as following[15] 
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Thus the leading term is 
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The ratio of leading term of two successive orders is 
2)1/(14/ 21

1 ≈+−=+
+ kLL k

k
k
k                      (11) 

Eq(11) shows that the leading term will increase exponentially, and increasing rate is 
about double. This prompts us that if the fitting frequency is dilated to [ωL, ωH]=[0,2], 
the blasting trend of the leading term will not occur any longer. 

Of course, a relevant concern is that the dilation of ωH from 1 to 2 may potentially 
hazard the computation of a high order OP and high order polynomials. We can argue 
that this concern is not necessary. Firstly, this dilation is affordable. For example, 



ICSV13, July 2-6, 2006, Vienna, Austria 

supposing that the fitting model has one hundred modals, then the leading term will be 
ω200≤2200=1.2677×1030<1039<10308, where 1039 and 10308 are the approximate upper 
limits based on single precision and double precision, respectively. Therefore, this 
dilation generally does not lead to overflow. 

Secondly, OPs have a good bound property in the fitting band, such as 
2/)12(|)(| +≤ kLk ω . If the three-term recurrence relation is used to compute OPs, a 

large number, such as 2200, will never appear. In fact, besides the computational 
efficiency forming matrixes [P] and [Q] in[4; 13] in aforementioned, directly using 
coefficients to compute νk in recurrence of Eq(5) can not yield very high order OPs. So 
far as authors’ numerical experimental experience, this recurrence will collapse at an 
order about 26~28 in a double precision workbench, if νk is computed from the 
coefficients stored in the matrix [Θ]. This occurs even in the case of theoretically 
known Legendre polynomial. 

Thirdly, a general polynomial can be computed by the Horner algorithm 
efficiently[2]. The Horner algorithm, an alternative name, Ch'in Chiu-Shao (Qin 
Jiu-Shao) algorithm, computes a polynomial recurrently. Thus, a large number, such as 
2200, will never appear in the recurrent procedure either. The overflow can only occur if 
the polynomial is indeed an outlier. If the function value of a polynomial on the fitting 
band is well bounded, the recurrent algorithm seldom confronts with the overflow 
problem.  

MAPPING FREQUENCY VECTOR FOR PRACTICAL CASES 

The above discussion applies to ωL=0 only. In practice, piecewise fitting is used more 
frequently. In some extreme cases, ωL is close to ωH. If we still set mapping ωH=2, the 
leading term will blast as the order increases either, though the blast speed is moderate. 
In the case of fitting real number data, mapping the fitting band into [-1,1] is 
recommended [12]. However, this mapping can not be implemented successfully. This 
is due to that the translating the origin will implicate coefficients of the fitting model 
with the complex number. To avert the complex coefficients, the only option is scaling. 

It has already be shown above that ϕk+1,k+1/ϕk,k approaches a constant for [ωL, ωH]= 
[0,2]. If we examine the trend of ϕk+1,k+1/ϕk,k for ωL≠0, it manifest as one high followed 
by one low, unlike for the case of ωL=1. However, ϕk+2,k+2/ϕk,k is indeed approximate a 
constant. Thus, the explosion of the leading term can still be suppressed by mapping 
the fitting band, whereas the leading term after mapping goes up and down. 

After lengthy numerical experiment, the empirical optimizing scaling factor µ for 
ωL/ωH=0~0.92 is shown in Figure 1. A good empirical model is  
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This is also shown in Figure 1. If ωL/ωH<0.5, a more simple scale model is  
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With Eq(12), we can suppress the explosion of leading term efficiently, which is 
instantiated in Figure 2. Here four cases are presented: case 1, [ωL, ωH]=[0,1]; case 2, 
[ωL, ωH]=[0.5,1]; case 3, [ωL, ωH]=[0.8,1]; case 4, [ωL, ωH]=[0.9,1]. After µ is 
determined from Eq(12), the fitting band is mapped into µ [ωL, ωH]. For all the cases, 

400=N . Figure 2 clearly shows that the leading term before rescaling increase 
exponentially as the order increases. The closer is ωL/ωH to 1, the faster is the blasting 
speed. However, after rescaling, the amplitude of leading term is very steady. For 
ωL/ωH=0, leading term is almost is a constant. As ωL/ωH increases, the leading term 
coefficients manifest oscillating, one high follows by one low. Nevertheless, even for 
ωL/ωH=0.9, the oscillating amplitude is no very large.  

CONCLUSIONS 

Generally, frequency mapping must be conducted before curve fitting to render a better 
numerical condition of the normal matrix. However, if the frequency vector is mapped 
onto [0,1], then the leading term coefficients of the orthogonal polynomials will blast 
exponentially. By examining the asymptotic of the Forsythe polynomials— Legendre 
polynomials, we find that mapping the frequency band into [0,2] is preferable. For the 
practical case that the low boundary can not be mapped to zero, a new frequency 
mapping formula is proposed to suppress the explosive trend of the diagonal elements 
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of the transitional matrix. This formula is a function of the ratio of the upper bound to 
the low band of the frequency band.  
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