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Abstract: The effects of engine torque variations on the power spectrum of a UH-
60A Blackhawk helicopter transmission are examined using data from tests on the 
ground and on a test bed. The measurements were performed on healthy and faulty 
transmissions for a particular serious type of fault namely a cracked planetary gear 
plate. The analysis also includes some preliminary experimental data from a seeded 
crack that was introduced to investigate crack growth rates, fault diagnosis and 
prognosis. For the simplification of the mathematics a novel straightforward 
technique for vibration mode analysis is introduced that can considerably simplify the 
corresponding codes for feature generation, diagnosis and prognosis based on the FFT 
transform. The numerical results strongly indicate that as the crack develops in size its 
effects on the emitted power spectrum to tend shift between damping to amplifying 
certain vibration modes, a phenomenon that complicates the feature extraction 
procedure that needs to be adjusted to include also the damping effects. These 
damping effects are closely related to the internal grinding of the new metal surfaces 
created by the crack progress. 
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1. Introduction 
 

The problem in question was initially diagnosed when during routine engine 
checks caused by a low oil pressure indication; cracks were then discovered on two 
carrier plates of the transmission of an US Army UH-60A Blackhawk helicopter. 

Fig. 1. Crack Length 8 cm approx. 
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Fig. 2. Sensor Location 
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progress. Fig.3 illustrates the most advanced crack in post#1. This plate was made of 
St50, a relatively less brittle material than the high tech titanium plate in the 
helicopter, which explains the coexistence of five advanced cracks. 

Fig. 3. Carrier Plate with five
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mf(f) are the modes corresponding to any frequency f of the “healthy” and the “faulty” 
signals, then the corresponding algorithm for the index vector is simply: 
 

Ind(f)=+1 if  mh(f)<mf(f), and Ind(f)=-1 if  mh(f)>mf(f) 
 

 The vector Ind has several interesting properties: 
 

1. By adding the corresponding vectors of two signals and divide by two we obtain 
the corresponding index vector which contains only the frequencies that are amplified 
and attenuated in both signals, since this is essentially a logical AND operation. This 
procedure could be applied for n signals in which case the resulting vector will have 
to be divided by n. In such a case we obtain a vector function s(f) that has as elements 
the “probabilities” that in n signals a certain frequency has modes consistent with the 
general principle of mode amplification or attenuation in the case of a fault. 
2. By subtracting the corresponding vectors of two signals we obtain the 
corresponding vector that contains the “noise”, i.e. the vector that contains all the 
modes that are present in the two signals with opposite signs. 
3. By multiplying the corresponding vectors of two signals we obtain a vector that has 
1 in all the frequencies where in both signals consistent with the general principle of 
mode amplification or attenuation in the case of a fault and -1 when one of the two 
signals was inconsistent. 
 

3. Numerical results 
 

a. Ground tests. In this case six sets of measurements were performed on the test bed 
using 20%, 30%, 50%, 70%, 90%, 100% for the healthy carrier plate and six sets for 
the cracked. In both cases the signals were divided into 72 segments corresponding to 
10 carrier plate rotations. 
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Fig. 5 FFT power spectrum band and mean 
Healthy plate, torque 100%, PortRing sensor 
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Fig. 6 FFT power spectrum band and mean 
Healthy plate, torque 100%, Input2 sensor 

 
In Figs. 5, 6, the FFT bands corresponding to 100% engine torques and the mean FFT 
are illustrated for the healthy plate using the PortRing and Input2 signals. We may 
note that even without the presence of the helicopter rotor there are considerable 
variations of the signal FFT within the band which indicates a “noisy” engine 
operation. Similarly structured FFT’s were obtained in the case of the cracked plate 
for the corresponding sensors and will not be presented here for brevity. 
These results indicate there are considerable differences between the PortRing and the 
Input2 signals. In fact, the signals from the sensors PortRing and StbdRing located at 
the vicinity of the transmission were similar, as well as the signals from the remotely 
located sensors Input1, Input2. Since in most cases many sensors are used for 
diagnostic purposes, the question which signal is the most appropriate for diagnosis 
naturally arises. This choice can by simplified by the use of the index vector and the 
corresponding Probability of Success function s(f) defined by the formula: 

m/))f(Ind(f) s(
1
∑=
m
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Where m is the number of FFT power spectrums corresponding to the m consecutive 
segments of the signal, and f the corresponding mode. In our case the choice was 
m=72. The corresponding s(f) for the PortRing sensor for the cracked plate using as 
references the mean FFT’s for these torques are illustrated in Fig. 7. 
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Fig. 7. The Probability of Success function s(f) for the PortRing signal 

Close examination of fig. 7 reveals that there are no modes that are consistent with 
any maximum noise principle for all torques. This means that there is no feature 
which is a hundred percent successful using a single mode. However, one can 
obviously create features that are linear combinations of specific modes that can 
successfully diagnose the presence of the crack. In such a linear combination feature 
modes f with s(f)>0 should be used with a positive sign, whereas modes f with s(f)<0 
with negative. Clearly there is an infinite number of such features. By observing the 
general shape of these curves that tends to lie below the value of s(f)=0 it is clear that 
the presence of the crack tends to consistently attenuate modes rather than amplify 
them! The physical explanation of this phenomenon is the existence of friction 
between the crack surfaces. When a crack progresses by dS occupying a surface 
S+dS, initially the surface increment dS is rough as the crack surface follows the 
boundary surfaces of the microcrystal structures. As the crack normally advances in 
finite steps, initially there is considerable grinding between the two crack surfaces due 
to their microscopic relative motion. This grinding will affect some modes more than 
others by dissipating their energy, i.e. by damping them. The damping effects caused 
by the crack are clearly beyond the analyzing capacity of simple models related to 
tooth cracks [3,4]. Let’s now try to estimate the relative performance of the four 
sensor signals. Since, the ideal case would be a s(f) that is constant either 1, or -1 for 
all modes, a useful coefficient can be defined by the norm of the s(f) vector function, 
namely: 

m/)s'(sSfac •=  
Where m is the number of signal segments (m=72). 
 
 

“Probability” Norm Sfac
 Sensor 

Torque PortRing Stbdring Input1 Input2 
20% 0.010562 0.010411 0.011901 0.011771 
30% 0.010017 0.010263 0.010366 0.012118 
50% 0.010476 0.010261 0.010232 0.0133 
70% 0.0093262 0.0092009 0.009673 0.012608 
90% 0.0093757 0.0089248 0.01 0.014008 

100% 0.0096125 0.0090075 0.0095558 0.012263 
Sum 0.059369 0.058068 0.061728 0.076068 
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For the existing four signals the following table has been compiled for each load. The 
results indicate that the Input2 signal has the most consistent record. Since Input1, 
Input2 sensors are located further away from the engine transmission this is a rather 
surprising result for anyone who thinks that a carrier plate crack development is a 
phenomenon that has to be monitored by sensors in the vicinity of the crack. 
Therefore, to accurately assess the effects of the fault, one has to keep a distance from 
the oscillating parts that tend to confuse the issue. The final question that needs to be 
addressed is what kind of feature someone would need to create to diagnose and 
prognose such phenomena. As we mentioned before, a possible solution is to create a 
linear combination of all the modes that have s=1 with a positive sign and all the 
modes that have s=-1 with a negative sign. Indicative results are illustrated in fig. 8 
for all sensors. 
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Fig. 8. Diagnosis for all available signals (Red line-Cracked plate, Blue line-Healthy plate) 
 

b. Helicopter tests: In this case only the low torques of 20% and 30% were used for 
both the crack and healthy plates for safety reasons. For the tests shorter time intervals 
were used for data collection, as well as lower sampling frequencies (48kHz).  
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Fig
. 9. Probability of Success functions s(f) and index vectors comparison for the ground and helicopter 

tests in the case of the 20% torque for the PortRing signal. 
It is interesting to see how the signal of the ground tests compare to the one on the 
helicopter. This is illustrated in fig. 9. The most obvious effect is that the rotor 
assembly excites a large number of modes in the entire spectrum which can be used 
for the development of features. A comparison of the the corresponding features for 
the PortRing sensor at 20% torque using all modes f with s(f)=1, or s(f)=-1 are 
illustrated in fig. 10. 
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Fig. 10. Feature performance comparison for the ground and the helicopter tests 
c. Seeded fault ground tests: During these series of tests an artificial crack has been 
introduced on the helicopter transmission planet gear carrier plate and the engine was 
loaded with a sequence of specific torque loads namely 20%, 40%, 100%, 120% 
simulating a ground to air to ground (GAG) flight.  
 

GAG 0 36 100 230 400 550 
Crack length 1.344” 2.0” 2.5” 3.0” 3.5” 4.1” 

 

The proposed approach allows us to examine the development of the crack in terms of 
the changes of the index vector. 
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Fig. 11. The change of the Index vector with respect to GAG 55 as the crack progresses (PortRing, 
20% torque) 

The considerable variation of the Index vector for the GAG 64-146 cycles is a strong 
indication that a crack is present and rapidly progressing.  
Conclusions 
 

a. Test bed data: 
1. All four available sensor signals contain information that could be used for feature 
extraction (as it should) using the proposed method. 
2.  There is an infinite choice of features that can be assembled by a linear 
combination of modes that are amplified by the presence of the crack with a positive 
sign and modes that are attenuated by the crack with a negative sign.  
3.  The crack is a mechanism that amplifies and attenuates specific modes (obviously). 
Both types of modes should be used for feature extraction for maximum distinction of 
the fault. 
b. Helicopter data: 
1. The Index vector is useful to determine the presence of a crack on the carrier plate. 
2. In view of the considerable differences of the vibration signal between the test bed 
data and the helicopter data, a specialized feature has to be used in each case. 
c. Seeded crack data:  
1.  The existence of a crack on the carrier plate may be diagnosed by the rapid 
changes of the index vector. 
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