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Abstract 
Semi-active systems with variable damping and stiffness have excellent performances. 
However, conventional devices for controlling variable stiffness are complicated and difficult 
to implement in most applications. To address this issue, a new configuration that requires two 
controllable dampers is proposed. The configuration is experimentally implemented using two 
magnetorheological (MR) dampers for the controllable dampers in one degree-of-freedom 
(DOF) system. The responses of the system to sinusoidal and random excitations show that the 
variable damping and stiffness control can be realized by the proposed system, and the system 
with damping and stiffness on-off control provides the best vibration isolation. To expand this 
work, a 2 DOF vibration isolation system with variable damping and stiffness is also studied. 
The responses of the system to a random excitation show that the damping and stiffness on-off 
control system has the best performance. 

INTRODUCTION 

Traditionally, based on a vibration control system’s design and its energy requirements, 
it can be categorized as: passive, active or semi-active. The semi-active control systems 
represent a compromise between performance improvement and simplicity of 
implementation [1-3]. The idea of using variable damping in vibration systems has 
been shown by many researchers [1-4]. However, because the system stiffness is 
constant, the performance at the resonance frequency can not be avoided with the 
variable damping control for a base exciting system. Therefore, the vibration system 
with variable stiffness control has been proposed by some researchers [5, 6]. 
Kobori proposed a variable stiffness system to suppress the building’s response to 
earthquakes [6]. Youn and Hac used an air spring to vary the stiffness in a suspension 
system between three discrete values [5]. However, conventional implementation of 
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variable stiffness device is complicated and their responses exhibit time delay. The 
authors had proposed a structure using two Voigt elements in series to realize the 
variable damping and stiffness [7]. The sinusoidal and random responses of one 
degree-of-freedom (DOF) and 2-DOF systems showed that the system with damping 
and stiffness on-off control had a good vibration isolation performance [8]. 
However, because two controllable dampers were in series in the above system, if one 
of the two controllable dampers was in the off-sate and the other was on-off controlled, 
the total damping of the system almost was not be changed. In this paper, a new 
variable stiffness system using one Voigt element and spring in series is proposed. The 
performances of the proposed systems are studied with the sinusoidal and random 
excitations in calculation and experiments. 

A NEW VIBRATION SYSTEM 

A new model of 1-DOF vibration isolation system with two controllable dampers 
(Damping coefficients are c1 and c2.) is proposed and shown in Fig. 1 (a). The variables 
x0 and x are the base excitation and the response of mass m, respectively. The stiffness 
(k1 and k2) values of the two springs (spring 1 and 2) are not varied. However, the 
system effective stiffness can be varied by c2. Damper 2 and spring 2 comprise a Voigt 
element. The Voigt element and spring 1 are in series. The variable xm is the 
displacement of the point between Voigt element and spring 1. The system equivalent 
model is shown in Fig. 1 (b), here k ′  and c′  are the equivalent stiffness and damping 
coefficient, respectively. 
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(a) Original model                              (b) Equivalent model 

Figure 1 A new vibration isolation system. 

If c2 is small, k ′  is equal to the series of k1 and k2. However, if c2 is large, k ′  
approaches k1. Therefore, damper 2 can be used to realize the variable stiffness for the 
system. Damper 1 provides variable damping for the system. The equations of motion 
for the system shown in Fig. 1 (a) are 
 )()()( 0122 xxcxxcxxkxm mm &&&&&& −−−−−−= , (1) 
 )()()( 2201 mmm xxcxxkxxk && −+−=− , (2) 
where x&&  is the acceleration, 0x& , mx& , and x&  are the velocities of x0, xm, and x, 
respectively. The equivalent stiffness and damping coefficient are 
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where ω  is the excitation frequency. Based on Eqs. (3) and (4), k ′  is independent of c1, 
and k ′  and c′  are influenced by c2. If the parameter values: 2

1 4π=k N/m, 3112 =kk , 
and 1=m kg,  Fig. 2 shows the values of k ′  and c′  with different 2ς ( 222 2 mkc=ς ) 
and =1ς 0.1, 0.3 and 0.5 ( 111 2 mkc=ς ). The values of 1k , )( 2121 kkkk + , and 
corresponding 1c  are also shown by dotted lines in the figure. The frequency n1ωω = , 
and mk1n1 =ω  in Eqs. (3) and (4). 
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                    (a) Equivalent stiffness                                        (b) Equivalent damping 

Figure 2 Equivalent damping and stiffness varied by changing damper 2 ( 1nωω = ). 

According to Fig. 2, k ′  is changed by damper 2 from )( 2121 kkkk +  to 1k , and c′  can 
reach a maximum value. For Eq. (3), 02 =∂′∂ cc , and n1ωω = , the peak is obtained as: 

15.12 =ς  and 431max π+=′ cc . Based on Eqs. (3) and (4), k ′  and c′  are also dependent 
on ω . If damper 1 has a damping ratio 1.01off =ς  in the off-sate and 5.01on =ς  in the 
on-state, and damper 2 has a damping ratio 1.02off =ς  in the off-sate and 0.52on =ς  in 
the on-sate, k ′  and c′  are shown in Fig. 3. For 1nωω = , k ′  and c′  are plotted as dots in 
Fig. 3. When =2ς 1.0, the value of k ′  are also shown in Fig. 3 (a).  
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                    (a) Equivalent stiffness                                 (b) Equivalent damping 

Figure 3 Equivalent damping and stiffness of the system with excitation  frequencies. 

In Fig. 3 (a), when the excitation frequency is very large, k ′  reaches the maximum 
value k1. If 0.52on =ς  and n1ωω = , k ′  almost reaches the maximum value k1. Moreover, 
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if 1.02off =ς  and n1ωω = , k ′  is almost equal to k1k2/(k1+ k2). However, when ω  is very 
small ( n101.0 ωω = ) or very large ( n1100ωω = ), k ′  is almost equal to k1k2/(k1+ k2) or k1, 
respectively, whatever value of 2ς  is. According to Fig. 3 (b), c′  is changed by damper 
1 in the on and off states. When the excitation frequency is small ( n1ωω < ) and damper 
2 is in the on-state, c′  is changed very much by the excitation frequencies. 

THE VIBRATION SYSTEM WITH CONTROL ALGORITHMS 

The variable damping logic of damper 1 is 
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where fd1 is the damping force of damper 1, the damping coefficient c1(t) is equal to 
c1on ( n11on1on 2 ως mc = ) in the on-state and c1off ( n11off1off 2 ως mc = ) in the off-state [1]. 
The control algorithm of damper 2 is 

 
⎩
⎨
⎧

≤−−−
>−−−

=
0)(if)(
0)(if)(

02off

02on
d2 xxxxxc

xxxxxc
f

m

m

&&&

&&&
, (6) 

where fd2 is the damping force of damper 2, the damping coefficient c2(t) is equal to 
c2on ( n22on2on 2 ως mc = ) in the on-state and c2off ( n22off2off 2 ως mc = ) in the off-state [7]. 
Five types of control schemes are studied in the following sections. For Type 1, damper 
1 is in the off-state and damper 2 is in the on-state (called “Low damping”). For Type 2, 
damper 1 and 2 are both in the on-state (called “High damping”). In Type 3, damper 1 
is on-off controlled as given by Eq. (5) and damper 2 is in the on-state (called “D 
on-off”). Alternatively, in the Type 4, damper 2 is on-off controlled as given by Eq. (6) 
(called “S on-off”). For Type 5, damper 1 and 2 are on-off controlled (called “D+S” 
on-off).Considering a sinusoidal base excitation, the values 0XX  of the system with 
five control schemes are shown in Fig. 4. 
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Figure 4  Frequency responses of the system. 

According to Fig. 4, the system with D on-off control exhibits good vibration isolation 
performances of low and high damping systems in the resonance and high frequency 
regions. However, the response of S on-off control system is smaller than that of D 
on-off control at the resonance. The system with D+S on-off control has the best 
performance at the resonance frequency and has the same performance of D on-off 
control in the high frequency region. 
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EXPERIMENTS OF THE VIBRATION SYSTEM 

Experimental setup  

Figure 5 shows the experimental setup of the system. Two magnetorheological (MR) 
fluid dampers (RD 1097 made by Lord Cooperation) are used to provide the variable 
damping. In the experiment, the displacements x0 and x are measured by laser 
displacement sensors. The accelerations 0x&&  and x&& , and velocities x&  and 0x&  are 
obtained by differentiating the displacements in a computer. The dampers are oblique 
to the horizontal plane with angles o7.71 =θ  and o5.402 =θ . The platform is moved in 
horizontal direction using an electromagnetic vibration exciter. The experimental 
parameter values are listed in Table 2. The mass of the experimental structure is 
included in m. The applied currents of dampers I1=0.19 A and I2=0.48 A in the 
on-states and zeros in the off-states. According to the characteristics of MR damper and 
the responses of the vibration system, the damping coefficients 1offς , 1onς , 2offς , and 

2onς  are obtained and also shown in Table 2 [8]. Based on Eqs. (3) and (4), when 
n1ωω = , the values of k ′ , c′ , damping ratio ς ′  and resonance frequency fn are shown in 

Table 3. Here kmc ′′=′ 2ς  and =nf π2mk ′ . According to Table 3, the maximum 
value of k ′  is more than 2.8 times of the minimum value of k ′ . Moreover, the damping 
ratio ς ′  is changed by damper 1. 
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(a) Experimental system                                   (b) Photograph of the model 

Figure 5  Experimental setup. 

Table 2  Experimental parameter values      Table 3  Equivalent stiffness and damping 
Parameters ParametersValues Values

m

k1

k2

10.524 kg

4679.60 N/m

2506.96 N/m

0.0815

0.3492

0.0619

18.4696

off1ς

off2ς

on1ς

on2ς
  

1.9886

Damper 1 Damper 2 (N/m)k ′ ς ′ fn (Hz)

off on

off off

on off

on on

1643.02 0.1699

3.35264669.80 0.1001

1.98861643.02 0.6217

3.35264669.80 0.3680

44.69

44.37

163.50

163.18

c′(Ns/m)
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Frequency responses to a sinusoidal base excitation 

When the amplitude x0 is 5 mm and the frequency is from 1 Hz to 10 Hz of sinusoidal 
wave, the steady state responses of X/X0 are shown in Fig. 6. Here X0, and X are the 
steady state amplitudes of the displacements of x0 and x. Because of the ability of 
electromagnetic vibration exciter, the experimental results are obtained only from 1 Hz 
to 10 Hz in the following sections. According to Fig. 6, the calculation results are 
similar to those of the experiment. The response X/X0 of the S on-off control is smaller 
than that of D on-off in the resonance frequency region, but it is larger than that of D+S 
on-off control in the high frequency region. The system with D+S on-off control has a 
good performance in the resonance and high frequency region. 
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Figure 6  Frequency responses of the mass with a sinusoidal excitation. 

Responses to a random base excitation 

Figures 7 show the frequency responses of the control systems with a random base 
excitation. The values of X/X0 are derived from the PSD values of X divided by the PSD 
values of X0. The PSD values are obtained by averaging the experiment data over 15 
minutes. The input signal is also shown in the figure. The responses of the systems with 
the random input are similar to those of the system with the sinusoidal input shown in 
Fig. 6. 
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Figure 7 Frequency responses of the system to a random excitation. 
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A  2-DOF VIBRATION SYSTEM  

Figure 8 shows a 2-DOF vibration system with the proposed configuration. The two 
controllable dampers have damping coefficients of c21 and c22, respectively. Here, m1 
and m2 are masses; k21 and k22 are stiffnesses; k1 is the bottom spring stiffness; x0, x1, 
and x2 are the displacements of a base excitation, m1, and m2, respectively. In this 
section, the parameter values are: 1.021 =mm , 2

221 4π=mk [ ])kg( ×mN , 312121 =kk , 
10211 =kk , m2=1kg, 22121n mk=ω , 22222n mk=ω , 21n22121 2 ως mc = , 22n22222 2 ως mc = , 
1.0off21 =ς , 5.0on21 =ς , 1.0off22 =ς , and 0.5on22 =ς . These values give the first natural 

frequency of about 0.5 Hz ( π2)( 222122221n22 kkmkkf += ) and 1 Hz ( πω 2n21n21 =f ), 
and the second natural frequency of about 11 Hz. The control algorithms are same as 
those in the 1 DOF system. 
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Figure 8 A 2 DOF vibration isolation system. 

Figure 9 shows the responses of 02 XX &&&& and 012 )( XXX −  to a random excitation. 
Comparisons of the responses show that the D+S on-off control system has a good 
performance of acceleration in the low frequency region. In the high frequency region, 
the responses of D+S on-off are similar to those of D on-off control. At frequencies 
above 20 Hz, there is an increase in the acceleration responses of D on-off and D+S 
on-off control. That was caused by the shock force at switching time [9]. The relative 
displacement of D+S on-off control is small at the first resonance.  
 

            
100 101 10210-4

10-2

100
Low High

D on-off

S on-off
D+S on-off

n1ωω

X/
X 0

       
100 101 10210-2

10-1

100

101

Low

High
D on-off

S on-off

D+S on-off

n1ωω

X/
X 0

 
                       (a) Acceleration                                      (b) Relative displacement 

Figure 9  Responses of acceleration and relative displacement to a random excitation. 
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CONCLUSIONS 

A new configuration of the variable damping and stiffness system was proposed by 
using two controllable dampers. A controllable damper and a constant spring 
comprised a Voigt element. The Voigt element and a spring were in series. The 
stiffness of the whole system was varied by controlling the damper in the Voigt 
element, and the other damper provided variable damping for the system. 
The experiments and theoretical calculations were carried out and the results were in 
good agreement. The responses to sinusoidal and random inputs were studied for five 
types of the control systems: low damping, high damping, damping on-off, stiffness 
on-off, and damping and stiffness on-off control systems. According to the 
experimental and calculation results, the variable damping and stiffness was 
implemented by the proposed system, and the system with damping and stiffness 
on-off control had excellent performances. In the two degree-of-freedom system, the 
system with damping and stiffness on-off control system also had good performances. 
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