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Abstract

The new approach was used to obtain the resonant frequencies and mode shapes for the 2D/3D
boundary-valued problems for the Helmholtz equation. The corresponding boundary-valued
problem are solved for the different wavenumbers from some range. For the each wavenum-
ber two integral functions were computed after obtaining numerical solution. These functions
have breaks in points conterminous to eigenfrequencies. These breaks reflect influence of
eigenmodes on the numerical solution. It is interesting also to note, that the number of itera-
tions neede for convergence of conjugate gradient methods was increased unsignificantly in
the neighbourhoods of eigenvalues. The comparison of nhumerical and analytical data in the
application of the method to boundary-valued problems of the first and second kind has shown
that the given method is able to find the resonant frequencies in practical problems.

INTRODUCTION

The Helmholtz equation arises in many physical applications, in particular in acoustics. The
boundary element method (BEM) is the powerful tool for the solution of many linear partial
differential equations and, in particular, for the Helmholtz equation.

The traditional BEM is derived from a boundary integral equation (BIE) by dividing the
domain boundary into boundary elements and applying collocation method to obtain the solu-
tion. The modern variants of BIE for the Helmholtz equation are based on the complex-valued
fundamental solutions (Green'’s functions) in the two-dimensional (2D) and three-dimensional
(3D) cases. This approach made the computational problem for the 2D/3D Helmholtz equa-
tion more complicated than, for example, for the corresponding Laplace equation. The main
difficulties are connected with the computations for the high wavenumbers, when we have to
use a large boundary element mesh. The memory storage is very large and CPU time is very
long for solving of the large linear system with complex-valued coefficients. The modern
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state-of-the-art for the BEM-based solutions is shown in many reviews, in particular Brebbia
[6], Banerjee and Butterfild3], Amini and Kirkup [2].

In this work a new formulation of the boundary element method is suggested for the
fast computing of the eigenfrequenciesfor the Helmholtz equation. It is a variant of the direct
integral equation formulation based on the real-valued fundamental solutiginthle appli-
cation of the conjugate gradient methods for the fastsolving of the linear system and special
technique for a eigenfrequencies finding.

MATHEMATICAL FORMULATION

The Helmholtz equations for the complex-valued potentiahay be written in the 2D/3D
space as
L u] = Ayu + k*u = 0, 1)

wherek is a real-valued wavenumber;is space dimension (2 or 3). The equation is valid in
the domainD with boundaryS. We consider the linear boundary-valued problems with the
linear boundary conditions of the irst, second or third kind. The boundary condition on the
boundaryS takes the following form:

ou+ Pup = f, (@)

whereq, § are real-valued coefficients, is the unit outward normal at the poif on the
boundary.

Today for solving of the Helmholtz equation by the boundary element methods the
fundamental solutions (Green’s functions for the infinite medium) in the complex variables
[1,2,3] are used as a rule. In two-dimensional case it is

7
Fyp= ZHél)(kTMP), (3)

whereH[()l) is the Hankel function of the first kind of order zerQy p is a distance between
the pointsM andP; k is a wavenumber.
In three-dimensional case the fundamental solution is

1 e~ thrup

(4)

k
Fyp = I rup

This approach takes a lot of memory storage and CPU time in comparison with the anal-
ogous Laplace equation. Usage of the real-valued fundamental solutions will give a reduction
of memory storage in half and simplification and speeding-up program codes for computation
of solution of the boundary-valued problems for the Helmholtz equation.

In the present work for two-dimensional case a new real-valued fundamental solution
was used

1
Ffp= EYO(kTMP)a (5)
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whereyyj is the Bessel function of the second kind of order zero (called as Neumann function
of order zero also)]]. This function is a real part of the complex-valued Hankel function
of a real argument. The function has a logarithmic singularityrfor> 0 and the suitable
conditions abo.
In a tree-dimensional case the fundamental solution was
1 coskryp
FYp=——7"22 6
hp = g ©)
i.e., it was a real part of the corresponding complex-valued fundamental sold}iais@.
Let usy is a real or imaginary part of complex-valued potentialThen an integral
representation fap in domainD may be written as

oM = /S(SOP,nFMP — opFypn)dSp, (7)

where pointP € S andM € D. Below we’ll name pointM as viewpoint.

BOUNDARY ELEMENT METHOD

The boundary element method is derived from the integral representd}ibg @iscretizing

the boundary and through the application of collocation method. This approach is well known

and described in details in references [1,2,5]. The discretizatiof),offiich leads to the clas-

sic 'boundary element method’ technique is described shortly below. In the constant boundary
element method, the above integral equation is solved numerically by dividing the boundary
S into N boundary elements, in each of whighandy ,, are approximated by constants.

In a 2D case the boundary was approximated by straight line elements. In order that
normal to the boundary outward the two nodes that define each element must be numbered in
the anti-clockwise direction when it viewed from just inside the domain.

In a 3D case the boundary was represented as a set of triangular panels. In order that
normal to the boundary outward the tree nodes that define each element must be numbered in
the anti-clockwise direction when it viewed from just outside the domain.

We denote these values ky andy; ,,¢ = 1,...N; and apply equation7j at one
nodal point)/; in the center of each boundary element to obtain

N N
1
Q¥i = Z(@j,n/ FipdSp — ¢; / FipndSp) = (Aijpjn+ Bije;), (8

=1 Sj Sj j=1

whereS; denotes integration over thiéh boundary element.

Coefficients4;; andB;; of the linear system of equatior) @re integrated numerically
over boundary elements using the following approach.

When the viewpointV/ lies far from the boundary element, the integrand is continu-
ously differentiable and hence standard quadrature rules are satisfactory. The quadrature order
decreased with the increasing distance from viewpoint to the center of the boundary element.
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However, when\/ lies near the element or on the element, the integrands are became
near-singular ones and standard quadrature rules are not applicable. If the viewpoint is sit-
uated near from boundary element then the special techniques applied involve ‘subtracting
out’ the singularity and evaluating the singular part analytically and remaining regular part
numerically by the same quadrature rules.

For example, for the 3D case it was

1
Aij = / FlbdSp = / (Flp = ;——)dSp + — [ —dSp (9)
S; mrip ‘

S J

By = / Fh, dSp — / Fl, — 1(7‘:2+”’”)]dsp+1/ (L Tnag, 10y
J s, iPn s, iPn g 2rip T?P A7 s, 2r;p T?P

where, in @) and (L0) the first integral is non-singular. Evaluation in this way requires the
computation of the regular integral (amenable to standard quadrature) and the determination
of the subtracted out part.

The regular integrals irg( 10) that arise are approximated by a quadrature rule defined
on a triangle. Paper of Laursen and Gell@ttdontains a selection of Gauss-Legendre quadra-
ture rules for the triangle. The remaining parts9ngnd (LO) are integrated analytically over
boundary element.

The described procedure has allowed to develop a very exact and fast method for coeffi-
cient computation. Eliminating the; or ¢; ,, from each element on the boundary by applying
the boundary-valued condition in each nodal point, we thus obtain f&ma $ystem of the
N linear algebraic equations witN unknowns. The system d¥ linear algebraic equations
with the full matrix was solved by the different methods that described in the next section.

SOLUTION OF A LINEAR SYSTEM

Traditionally, the direct methods have been employed to solve the resulting linear system such
as the Gaussian elimination method. However, in recent years, interest has grown in iterative
solvers, and in particular, the use of the conjugate gradient methods has been investigated
by a number of researche$][[8], [9]). The field of iterative methods for solving systems

of linear equations is in constant flux, with new methods and approaches continually being
created, modified, tuned, and some eventually discarded. At the present work the five methods
were used for the numerical solving of the linear equation system.

e CGNE for the normal equations.

Biconjugate gradient method (BiCGJ) with Jacobi preconditioner.

Conjugate gradient squared method.

Biconjugate gradient stabilized method.

Gaussian elimination method.
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Algorithms of the conjugate gradient methods are described in bjokliese methods are
suitable when the matrix is asymmetric and nonsingular; however, convergence may be irreg-
ular [4], and there is a possibility that the method will break do@h The methods require
the three or four matrix-vector multiplication at each iteration. The iterative solvers were used
with Jakobi preconditioning; that is, in general, the simplest form of preconditioner.

The comparison of the different methods efficiency for the linear system was made for
the 3D problems. The numerous calculations have allowed to obtain the following conclu-
sions.

e lteration count are relatively insensitive to mesh size. Indeed, the counts often decreased
when number of the boundary elements increased.

e |teration count are especially small for the Neumann boundary problem.

e The results are clear demonstrated the benefits from conjugate gradient methods in
comparison with Gaussian elimination method.

Many of these trends are the same as for finite elements Ggeb[it the sensitive to
wavenumber is considerably less pronounced.

MODAL ANALYSIS

In this section it will be shown how the very fast boundary element method, developed
in previous sections, can be used to obtain the resonant frequencies or eigenvalues of the
corresponding boundary-valued problem. The problem is that of finding the values of the
wavenumberg and the non-trivilar scalar functiorssuch that the Helmholtz equatioh) (
is satisfied in an domai® with boundarysS with the homogeneous boundary conditions of
the first, second or third kind.

ou+ Puy, =0, (1)

wherea andg are known real-valued functions.

In general, the application of the boundary element methods for the Helmholtz eigen-
value problem is not very popular, because, unlike the finite element or finite difference meth-
ods, the eigenvalue problem for BEM is nonlinear one.

The problem of solving the Helmholtz eigenvalue problem via boundary element meth-
ods have been analysed by some researchers. Firstly, the simplest idea such as the problem of
finding the roots of the equation

det(Ax) =0 (12)

was considered in work4.0], [11], [12].

In figure 1 the value of determinant is presented as a function of wavenunidethe
first boundary-valued problem for the interior sphere devided into 512 boundary elements.
The analytical solution wa&, = expikz. It is clear from the plot that the numerical pre-
diction of the roots of equatiorlp) is a very complicated problem. It is explained to that
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Figure 1:Determinant in 2D case as function of wavenumber

determinant computation is the more costly numerical procedure then the obtaining the solu-
tion of linear system by iterative methods.

Another approach was introduced in Kirkup and AmitB]] The method involves
approximating each component of the matfix by a polynomial ink in some given range
of wavenumber. This allows to rewrite the nonlinear eigenvalue problem in the form of a
standard generalized eigenvalue problem.

In the present work for the prediction of eigenvalues the following procedure was devel-
oped. The corresponding boundary-valued problem are solved for the different wavenumbers
from some range. For the each wavenumber two integral values were computed after obtain-
ing numerical solution

¢ = / Ruftu,, dS P = / SuSu,, dS
S S

whereR and$ are the real and imaginery parts of the complex-valued funetidine typical
plots of ¢ and+y for 2D problem are shown in figure 2 as function of wavenunhdt is
interesting to note, that in a neighbourhoods of eigenfrequencies of furcaony have a
discontinuity. The functior have the nonremovable discontinuities for odd eigenfrequencies
and functiomy for even ones. These discontinuities reflect influence of eigenmodes on the
numerical solution. It is interesting also to note, that the number of iterations neede for con-
vergence of conjugate gradient methods was increased unsignificantly in the neighbourhoods
of eigenvalues.

For check of availability of a method in a 3D case eigenfrequencies were computed in
rectangular room with rigid walls and dimensiohs = 5, L, = 4 andL. = 3. The problem
has analytical eigenvalues

) () (),
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Figure 2:Values of¢ and as functions of wavenumbét Interior of sphere with boundary-
valued problem of the first kind with 512 boundary elements.

The computed lowermost eigenfrequencies are submitted in the table 1 for the mesh with
N=1032 and N=3008 boundary elements. From this table it is obvious, that in a case of richer

Table 1:Comparison of the numerical and analytical eigenfrequencies for rectangular room

Analytical Num. N=1032 Num. N=3008

1.4520 1.4423 1.4539
1.8146 1.8114 1.8133
1.9897 1.9611 1.9832
2.2679 2.2668 2.2630

grid the accuracy of received results is higher.

SUMMARY

Boundary element methods are becoming increasingly popular as methods for the numeri-
cal solution of linear elliptic partial differential equations such as the Helmholtz equation.
The advantages of the proposed variant of the BEM for the 2D/3D Helmholtz equation arises
from the fact that we can separately solve boundary-valued problems for the real and imag-
inary parts of the complex-valued potential. Use of conjugate gradient methods accelerates
computations and does algorithms highly parallelizable.

The developed boundary element method can be confidently applied to the 2D/3D
modal analysis problem. The comparison of numerical and analytical data in the applica-
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tion of the method to boundary-valued problems of the first and second kind show that the
BEM is able to find the resonant frequencies in practical problems.
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