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Abstract 
Encapsulated gas microbubbles, known as ultrasound contrast agents, are widely used in 
ultrasonic medical diagnostics and therapy. Ultrasound contrast agents typically consist of a 
gas core surrounded by a shell of albumin or lipid. Existing theoretical models of contrast 
agents assume that the encapsulating coating behaves as an elastic (or viscoelastic) solid. 
However, experimental data available in the literature for lipid-shelled agents indicate that the 
lipid coating exhibits properties of a viscoelastic fluid rather than a viscoelastic solid. The 
present paper proposes a new theoretical model for a lipid-shelled contrast agent 
microbubble. The model describes the encapsulating coating as a linear viscoelastic fluid and 
incorporates the translational motion of the bubble. It is shown that theoretical predictions of 
the new model are in good agreement with experimentally measured translational 
displacements of lipid-shelled microbubbles exposed to a high-intensity ultrasound field.  

INTRODUCTION 

Ultrasound contrast agents are micron-sized artificial gas bubbles surrounded by a 
shell of albumin, lipid, or other biocompatible material [1]. These bubbles are 
injected into the bloodstream in order to increase blood-tissue contrast during an 
ultrasonic examination. The function of the shell is to stabilize bubbles against 
dissolution and coalescence. This technique is effectively used in contrast 
echocardiography. Targeted imaging and localized drug delivery are examples of 
other clinical applications of contrast agents [5]. Targeted agents are taken up by 
specific tissues or adhere to specific sites in the body. By enhancing the acoustic 
differences between normal and abnormal parts of organs, these tissue-specific agents 
improve the detectability of abnormalities, such as lesions, inflammatory processes 
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and thrombi. In addition, targeted agents can carry drugs or genes to be delivered to a 
specific site or tissue, which provides unprecedented possibilities for a highly 
selective therapeutic action. At the same time, contrast bubbles can induce deleterious 
bioeffects and damage, such as undesirable destruction of tissues and detrimental 
production of free radicals in blood [10]. There is therefore increased need for a 
thorough understanding of the dynamics of contrast agents.  

Existing theoretical models of contrast agents assume that the encapsulating 
coating behaves as an elastic (or viscoelastic) solid [4,7,9,11,13]. However, 
experimental data available in the literature for lipid-shelled agents indicate that the 
lipid coating exhibits properties of a viscoelastic fluid rather than a viscoelastic solid 
[3,6,14]. It is the purpose of the present paper to verify this hypothesis. To this end, a 
new theoretical model for a lipid-shelled contrast agent microbubble is developed that 
describes the encapsulating coating as a linear 3-constant Oldroyd fluid. The model 
also incorporates the translational motion of the bubble. The validation of the model 
is carried out by comparing its predictions with available experimentally measured 
translational displacements of lipid-shelled contrast agents.  

MODEL FORMULATION 

Consider a spherical encapsulated gas bubble immersed in a fluid and undergoing 
radial oscillation in response to an imposed acoustic field. Assuming that the ambient 
fluid and the encapsulating layer are incompressible, from the continuity equation it 
follows that both the fluid velocity and the velocity inside the bubble shell obey the 
equation:    

0v , (1)  

where v

 

stands for both of the above velocities. In view of spherical symmetry, from 
(1) it follows that    
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where ( , )v r t

 

is the radial component of v , 1( )tR is the inner radius of the bubble 
shell, and the overdot denotes the time derivative. If 1 2rR R , where 2( )tR denotes 
the outer radius of the bubble, v

 

is the velocity inside the encapsulating layer; if 
2r R , v  is the velocity of the ambient fluid. Also, the assumption of incompressible 

shell gives:   

3 3 3 3 2 2
2 1 20 10 1 21 2 ,        R R R R R RR R , (3)  

where 10R  and 20R  are respectively the inner and the outer radii of the bubble shell at 
rest. These equations are used in further calculations.  
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Conservation of radial momentum yields [12]   

3rr rrv v p
v

t r r r r
. (4)  

Here 

 

is equal to S

 

or F , S

 

and F

 

are respectively the equilibrium densities 

of the shell and the ambient fluid, p

 

is the pressure within the shell, Sp , or the fluid 

pressure, Fp , and rr  is the stress deviator in the shell, ( )S
rr , or that in the fluid, ( )F

rr .  

The boundary conditions at the two interfaces are given by    
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where 1( , )g tP R is the pressure of the gas inside the bubble, 1

 

and 2

 

are the 

surface tension coefficients for the corresponding interfaces, and ( , )ac x tP is the 
driving acoustic pressure at the location of the bubble. Note that we intend to allow 
for the translational motion of the bubble at a later time. Therefore the current 
location of the bubble is indicated by the spatial argument x

 

in ( , )ac x tP , assuming 
that the time-dependent position of the bubble centroid in an inertial frame is 
specified by ( )x t .  

Integrating (4) over r

 

from 1R

 

to 2R

 

using the parameters appropriate for the 
encapsulating layer and from 2R

 

to 

 

using those appropriate for the ambient fluid, 
assuming that the fluid pressure at infinity is equal to the hydrostatic pressure 0P , 
and combining the resulting equation with (5), one obtains   
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where F S S .  

Assuming that the behavior of the gas core is adiabatic, one has    

3
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, (7)  
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where 0gP

 
is the equilibrium gas pressure in the bubble and 

 
is the ratio of specific 

heats.  
The rheological behavior of the bubble shell will be approximated by the linear 

3-constant Oldroyd model which can be expressed as [2]    

( )
( )

1 22
S

rr rrS
rr S rr SS

v
v

t t
, (8)  

where rr v rv

 

is the radial component of the rate-of-strain tensor, 1S

 

is the 
relaxation time of the shell, S

 

is the shear viscosity of the shell, and 2S

 

is the 

retardation time of the shell. Substitution of (2) into (8) yields    
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Equation (9) suggests that ( )( , )S
rr r t  can be written as    
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Substituting (10) into (9) shows that the function ( )S tD  obeys the equation    

22 2
1 1 11 21 1 12S S SSD R R RD R R R . (11)  

Using (10) and (3), the first integral term in (6) is calculated as    
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The ambient fluid will also be described by a linear 3-constant Oldroyd model    

( )
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1 22
F
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v
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. (13)  

Note that for 1 1 0F F , (13) reduces to the ordinary equation that describes a 
viscous Newtonian fluid so that equations derived below can also be applied if the 
ambient fluid is water, which is usually the case in laboratory experiments. 
Substituting (2) into (13) and representing ( )( , )F

rr r t  as   
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one has    
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The second integral term in (6) takes the form    
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Substitution of (7), (12), and (16) into (6) yields   

3 3
1 2 2 1 1

1 1 1 3
2 2 2

3 4
1

2 2
R R R R

R R R
R R R

  

3 3 3
20 1010 1 2

0 03 3 3
1 1 2 2 1 2

( )1 2 2 ( )
4 4 ( , )

SF
g acF S

S

tD R RtR D x tP P P
R R R R R R

.    

(17)  

Equation (17) can be modified to take account of the translation motion of the 
bubble and radiation losses due to the compressibility of the ambient fluid. The 
modification can be performed by directly adopting necessary corrections from the 
equations of motion obtained in [8]. The result is   
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(18)  

where    

1 4 3 34
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, (19)  

c

 

is the sound speed in the ambient fluid, and G

 

denotes the right-hand side of (18). 
The compressibility correction is given by the last term on the left-hand side of (18), 
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while the first term on the right-hand side of (18) provides the coupling with the 
translational equation. This latter is given by    

3 3
2 2

2 4  
( , )

3 3
ac db F

d
x x x tm R R P F

dt x
, (20)  

where bm

 

is the mass of the bubble, the second term on the left-hand side of (20) is 
the added mass force, the first term on the right-hand side is the acoustic radiation 
force, and dF

 

is the viscous drag force which can be taken, for example, in the form 
of Oseen s law [12]:    

2 2

1 
24 9

4
d F F Fx xF R R . (21)  

Finally, for (0) (0) 0S FD D , from (18) it follows that 0gP  is given by    

1 2
0 0

10 20

2 2
gP P

R R
. (22)  

It is also worth noting that in the general case x

 

in (18) and (20) should be 
considered as the velocity of the bubble with respect to the velocity of the 
surrounding liquid. That is, if there is a stream in the bulk liquid, due to the 
propagation of the acoustic wave and so forth, x

 

should be replaced with exx v , 
where exv  denotes the liquid velocity unrelated to the presence of the bubble.  

MODEL VALIDATION 

To validate the proposed model, experimental data obtained for the contrast agent 
MP1950 in [6] were used. MP1950 is a phospholipid-shelled microbubble with a 
decafluorobutane core. The ambient fluid used in [6] was water, i.e., 1 1 0F F . 
MP1950 was insonified with a single 20-cycle acoustic pulse with a pressure 
amplitude of 180 kPa and a center frequency of 2.25 MHz. To evaluate the shell 
parameters 1S , 2S , and S , theoretical radius-time curves obtained from the model 

were fitted to experimental curves measured in [6] by the least squares method. The 
other gas and shell parameters were chosen to be 1.07 , 1100S

 

kg/m3, 1 0

 

N/m, 2 0.033

 

N/m, and 20 10 2R R

 

nm. The estimated values for 1S , 2S , and 

S

 

were then used to calculate expected translational displacement for bubbles of 

different size. The obtained results are depicted in Figure 1. Shown by circles is 
experimental data obtained in [6]. The solid line corresponds to the best-fit values of 
the shell parameters 1 1.5S ·10-8 s, 2S 10-10 s, and S 1.33 Pa s, which were 

obtained by fitting theoretical and experimental radius-time curves for a 0.79- m 
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radius bubble. For comparison, the dashed line reproduces the theoretical curve 
obtained in [6] assuming that the lipid coating behaves as a viscoelastic solid. It is 
seen that the new (Oldroyd) model provides a much better agreement between theory 
and experiment.  

 

Figure 1. Experimental and theoretical translational displacement as a function of 
equilibrium bubble radius. Circles indicate experimental results. Bubbles are set in motion by 
a 20-cycle, 2.25 MHz, 180 kPa acoustic pulse. The ambient fluid is water.  

 

Figure 2. Simulated translational displacement in blood.  

Figure 2 shows the simulated translational displacement in the case that the 
ambient fluid is a non-Newtonian liquid with blood characteristics [11]: 1F 10-8 s, 

2 0F , and F 0.004 Pa s. The other parameters are the same as in Figure 1. As 

could be expected, distances travelled by bubbles in blood are considerably shorter.  
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SUMMARY 

The present paper proposes a model that describes the spatio-temporal dynamics of a 
lipid-shelled contrast agent microbubble in a strong ultrasound field. Unlike previous 
studies, the behavior of the lipid coating is approximated by the 3-constant Oldroyd 
model. Comparison of theoretical results with experimental values of translational 
displacement available in the literature for lipid-shelled contrast agents shows that the 
proposed model provides good agreement between theory and experiment.   

The authors wish to acknowledge the financial support of the International Science 
and Technology Center (ISTC) under Contract B-1213.  
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