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Abstract

The paper presents recent applications of an extension of the Karhunen-Loève
Decomposition (KLD) to the modal analysis of non-homogeneous structures.
Specifically, the method developed by the authors, and validated in the past only
on the basis of computer simulations, is here applied to the experimental analy-
sis of a uniform steel beam sensed with two couples of different accelerometers.
In this work, dimensions and weight of the sensors are such that their influence
on the beam motion can not be neglected, thus imposing to consider the instru-
mented system as a non-uniform vibrating structure. The natural modes of the
system are evaluated as the eigenfunctions (eigenvectors in the numerical ap-
proach) of the extended Karhunen-Loève integral operator, whose L2-kernel is
the time-averaged autocorrelation tensor of the displacement vector, multiplied
by the density of the structure. It has been shown that, in the limit for the ob-
servation time T tending to infinity and undergoing unforced free vibrations, the
eigensolutions of the Karhunen-Loève operator coincide to the natural modes of
vibration of the system. In practical applications, proper modal identification
has to be expected if the observed vibration is representative of the motion from
a statistical point of view. This is ensured if all the modes present in the mo-
tion undergo a sufficient number of periods during the acquisition time. Thus,
the acquisition time has to be sufficiently long provided, of course, that damp-
ing is not too high. In addition, the statistical nature of the method makes the
results of the analysis independent of the excitation used to initiate the motion,
resulting in a very appealing feature. The accelerometers signals, adequately con-
ditioned, have been acquired by means of an automatic measuring system and the
numerical data have been stored for later processing. The natural frequencies
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are evaluated by Fourier-transforming the projection of acceleration vector onto
the Karhunen-Loève eigenfunctions. The results obtained from the experimental
data are compared with those computed with a FEM code, showing a good agree-
ment. Furthermore, a preliminary estimate of the damping as a function of the
frequency is obtained using a novel methodology, based on the optimal matching
of the time-histories projections with an ideal damped oscillator.

INTRODUCTION

The Karhunen-Loève Decomposition (KLD) is a statistical method for finding a base
that cover the optimal distribution of energy in the dynamics of a continuum. This
method initially appeared in the signal processing literature, where it was presented by
Hotelling [1] in 1933 as the Principal Component Analysis (PCA). The theory behind
the method was taken again and studied in depth by Kosambi [2] in 1943, by Loève
[3] in 1945 and by Karhunen [4] in 1946. Since it was applied by Lumley [5] in 1967
to uncover coherent structures in turbulent flows, it has become a standard tool in tur-
bulence studies [6], where it is also known as the Proper Orthogonal Decomposition
(POD). The theory proposed by Karhunen [4] and Loève [3] is recently emerging as
a powerful tool in structural dynamics and vibration. A physical interpretation of the
use of the KLD in vibrations studies has been shown by Feeny et al. [7] and Wolter et
al. [9]. In structural dynamics, the method consists in constructing the time-averaged
spatial autocorrelation tensor of the elastic displacement field of the structure. Its spec-
tral analysis produces a basis, as a set of orthonormal eigenfunctions (eigenvectors, in
the numerical approach) and the corresponding set of eigenvalues, which represent the
energy content of each mode. It has been shown (e.g., Ref. [7]) that for undamped
and unforced structures with constant density, the eigenfunctions given by the stan-
dard KLD coincide with the natural modes of vibration. Recently, the formulation has
been extended by Iemma et al. [10] to the modal identification of structures with non-
uniform density. In the present work, the formulation presented in Ref. [10] is used to
evaluate the natural modes of an instrumented cantilever beam.

The general theory underlying the Karhunen-Loève decomposition is briefly re-
called, with emphasis on its application to quasi-periodic dynamical systems with non-
uniform density. The assumptions made in structural dynamics are shown and the
extented KLD is outlined. A method for estimating the natural frequencies and the
damping is also shown and the experimental results are presented.

EXTENDED KARHUNEN-LOÈVE DECOMPOSITION

In structural dynamics, the method introduced by Karhunen and Loève is used to pro-
vide a basis for the optimal representation of the displacement vector u(x, t) of a vi-
brating inhomogeneous structure. The method provides a basis which is optimal, in the
energy content sense, for the representation of the displacement vector u(x, t) in the
linear combination u(x, t) =

∑n
k=1 βk(t) ϕk(x), truncated to the order n, with x ∈ D
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and t ∈ [0, T ].1 The optimality condition associated to the KLD ensures that, for a
given n, the first n KLD basis functions capture, on average, more energy than any
other orthonormal basis in the linear representation of the field u (see, e.g., Holmes
et al. [6]). It has been shown that this property is satisfied (under certain conditions)
by the natural modes, provided that the formulation is embedded in the proper Hilbert
space (see Iemma et al. [10]). In the following, the theory underlying the extension of
the KLD to the modal identification of inhomogeneous structures is briefly recalled.

We assume that the dynamics of the undamped-unforced system is governed by
the equation ρ(x) ü(x, t) + Lu(x, t) = 0, where ρ = ρ(x) is the structure density.
Thus, the displacement vector is given by u(x, t) =

∑∞
k=1 αk(t) φk(x), where φk(x)

are the natural modes (linear normal modes), solution of Lφk(x) = ρ(x) µk φk(x),
with

∫
D ρ(x) φi(x) · φj(x) dx = δij. The time dependency of the solution is given by

αk(t) = ak cos (ωkt + χk), where ωk =
√

µk, and ak, χk ∈ < are determined by the
initial conditions.

Assuming that the displacement vector (at a given time) belongs to the Hilbert
space L2

ρ(D), defined by the inner product (f ,g)ρ :=
∫
D ρ(x) f(x) · g(x) dx, the opti-

mal decomposition of the vector u is given by the solutions of the integral problem (a
complete proof of the following equation is given in Ref. [10] and, thus, not repeated
here)

LE
R ϕ(x) :=

∫
D

ρ(y)R(x,y) ϕ(y) dy = λ ϕ(x). (1)

where R(x,y) := 〈u(x, t) ⊗ u(y, t)〉 is the time-averaged autocorrelation tensor of
the displacement vector u(x, t), being 〈. . . 〉 :=

∫ T

0
. . . dt the time-averaging opera-

tor and ⊗ the standard tensor product. LE
R is the extended Karhunen-Loève integral

operator and the KLD optimal basis is given by its eigensolutions. It may be shown
that LE

R is selfadjoint in L2
ρ(D), i.e., ( f ,LE

R g )ρ = (LE
R f ,g )ρ, and compact (since the

kernel of Equation 1 is bounded). Hence, its eigenvalues are real and its eigenfunc-
tions form a complete set of orthogonal functions in the above-defined Hilbert space
(see e.g., Ref. [13]). Under the hypothesis of undergoing unforced free vibrations and
assuming an observation time T tending to infinity, the Karhunen-Loève eigenfunc-
tions coincide with the natural modes of the structure, i.e., ϕk(x) = φk(x) and, in
addition, λk = 1

2
a2

k (again, see Iemma et al. [10]). In practical applications, proper
modal identification has to be expected if the observed vibration is representative of
the motion from a statistical point of view. This is ensured if all the modes present in
the motion undergo a sufficient number of periods during the acquisition time. Thus,
the acquisition time has to be sufficiently long provided, of course, that damping is not
too high.

1Note that, in general, x ∈ En, n = 1, 2, 3 and u(x, t) ∈ Vm,m = 1, 2, 3, being En an n-
dimensional (n = 1, 2, 3) Euclidean point space and Vm an m-dimensional (m = 1, 2, 3) vector space,
with n not necessarily equal to m; consider, for instance, the case of a bending beam (n = 1,m = 2),
or of a bending plate (n = 2,m = 1).
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NATURAL FREQUENCIES AND DAMPING ESTIMATE

The natural frequencies are evaluated using the following technique. First, the coeffi-
cients βk(t) (see previous Section) are computed as the L2

ρ(D)-projection of the vector
u(x, t) onto the k-th Karhunen-Loève mode, i.e., βk(t) = (u, ϕk)ρ :=

∫
D u(x, t) ·

ϕ(x)dx. Then the above coefficients are Fourier-transformed. Under the hypothesis
of proper modal identification (i.e., under the hypothesis that φk = ϕk) the frequency
associated to the k-th Karhunen-Loève mode is evaluated and assumed as the natural
frequency associated to the corresponding natural mode (see e.g., Refs. [9] and [11]).

The estimation of the damping is conducted by approximating the k-th coeffi-
cient βk(t) with the ideal damped oscillator

β̂k(t) := âke
−γ̂kt sin(ω̂kt + χ̂k) (2)

(being γ̂k the damping associated to the k-th mode) and finding those parameters
âk, γ̂k, ω̂k, χ̂k that solve the problem

Minimize
âk, γ̂k, ω̂k, χ̂k

∫ T

0

|β̂k(t)− βk(t)|2dt. (3)

NUMERICAL RESULTS

In this section, we present the application of the present method to the modal analysis
of a cantilever beam, instrumented with two couples of different accelerometers (see
Fig. 1). Dimensions and weight of the sensors are such that their influence on the beam
motion can not be neglected, thus imposing to consider the instrumented system as a
non-uniform vibrating structure.

The accelerometers signals, adequately conditioned, have been acquired by means
of an automatic measuring system and the numerical data have been stored in a com-
puter device for later processing. The extended Karhunen-Loève Decomposition out-
lined above has been used to process the acceleration vector of the beam ü(x, t) (for
the numerical implementation we used the formulation presented in Ref. [10]). Note
that, to the aim of modal analysis, we may use either displacements, velocities or ac-
celerations, since, as easily verified, the KLD properties hold in the three cases. Two
different experiments have been performed. In the first experiment, the beam motion
has been initiated by a single impulse at t = 0 and at the beam tip. In the second, the
motion has been re-sustained by a train of impulses at a random time and at a random
position on the beam. Figures 2 and 3 depict the signal of the first accelerometer for
the two experiments. Figure 4 shows (in logarithmic scale) the power spectral density
(PSD) of the signal for the first experiment. The peaks occur at 16.8 Hz, 99.2 Hz,
281.0 Hz and 533.2 Hz.

Figure 5 shows the Karhunen-Loève modes for the two experiments. A compari-
son with the natural modes of the instrumented system (computed with a FEM code) is
depicted, showing a remarkable agreement. In addition, it may be noted that the results
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Figure 1: The instrumented beam (plant)
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Figure 2: Signal 1 for exp. 1
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Figure 3: Signal 1 for exp. 2
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Figure 4: PSD of signal 1 (exp. 1)

of the two experiments are in excellent agreement, confirming that one may perform
the KLD indipendently of the excitation used. For the first experiment, the frequency
associated to each KL mode is evaluated using the method discussed above. Figures 6
and 7 show the coefficients β1(t) and β2(t) computed as the L2

ρ(D)-projection of the
acceleration vector ü(x, t) onto ϕ1(x) and ϕ2(x) respectively. Figures 8 and 9 depict
(in logarithmic scale) the PSD of the above coefficients. The peaks occur respectively
at 16.8 Hz and 99.3 Hz. Moreover, the same procedure, applied to the third and the
fourth mode, gives the frequencies 280.9 Hz and 533.7 Hz, resulting in a very good
agreement with those found in the spectral analysis of the accelerometer signal (see
above). The coefficients βk(t) have been approximated as ideal damped oscillators
as in Eq. (2). The “optimal” parameters âk, γ̂k, ω̂k, χ̂k have been evaluated for each
β̂k(t) by solving the problem of Eq. (3). Specifically, the Broyden-Fletcher-Goldfarb-
Shanno algorithm (BFGS, see, e.g., Ref. [14], pp. 194-201) has been used to find the
minimum of Eq. (3) in the four-variables space. In Figure 10, a comparison between
the approximated model β̂k(t) and the projection βk(t) is depicted for k = 2, showing a
very good agreement (the functions coincide within plotting accuracy). The linear be-
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Figure 5: Comparison between Karhunen-Loève modes and natural modes (FEM)

havior of γ̂(f) (being γ̂ the damping and f the frequency, see Fig. 11) suggests viscous
effects, such as structure-air interaction, being involved in the observed vibration.
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Figure 6: Coefficient β1(t)
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Figure 7: Coefficient β2(t)
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Figure 8: PSD of β1(t)
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Figure 9: PSD of β2(t)
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Figure 10: Approximated model for β2(t)
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Figure 11: Damping γ̂ vs. frequency f

CONCLUDING REMARKS

An extension of the Karhunen-Loève Decompositon specifically aimed at the modal
identification of structures with non-homogeneous density has been used to evaluate
the natural modes of an instrumented cantilever beam. Two different kinds of excita-
tion have been used during the experiments and the processing of the two sets of data
gives very close results, confirming that the KLD may be performed independently of
the excitation used. In addition, the results are in a good agreement with the natural
modes computed with a FEM code. A method for finding the natural frequency has
been used, showing a very good agreement with the results of a classical spectral anal-
ysis. A numerical technique for estimating the damping has been also presented and
applied to the present case.
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