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Abstract 
A structural coupling method is developed for the dynamic analysis of a nonlinear structure, 
consisting of substructures and concentrated nonlinear hinge joints or sliding lines. Component 
mode synthesis method is extended to couple the substructures and the nonlinear interfaces, so 
that iterative problems such as flutter analysis can be efficiently analyzed with a reasonable 
cost and time. In order to verify the improved coupling method, a numerical plate model 
consisting of two substructures and torsional springs, is synthesized by using the proposed 
method and its model parameters are compared with analysis data. Then the coupling method is 
applied to a three-substructure-model with the nonlinearity of sliding lines between the 
substructures. The coupled structural model is verified from its dynamic analysis. The analysis 
results show that the improved coupling method is adequate for the nonlinear structural 
analyses with as the nonlinear hinge and sliding mode condition. 

INTRODUCTION 

Most practical engineering structures are complicated with have some structural 
nonlinearities. As an example, a deployable missile control fin has a nonlinear hinge 
joint which consists of a torsional spring, a compression spring and several stoppers. 
Because of wear and manufacturing tolerance, the hinge has some structural 
nonlinearities such as preload, free-play, asymmetric bilinear stiffness, hysterisis and 
coulomb damping. Another example can be a pantograph tilting structure consisting of 
a pantograph, sledge and base frames. There is a structural nonlinearity of sliding lines 
between the base frame and the sledge, which is restricted to follow guide lines on the 
base frame. These nonlinearities are impossible to be completely eliminated, and exert 
significant effects on the static and dynamic characteristics. Therefore, it is necessary 
to establish an accurate structural dynamic model to predict or control the nonlinear 
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dynamic systems. However, it is very difficult to directly apply full order nonlinear 
finite element models to many practical engineering problems, especially when iterate 
analyses are required as in the time-domain nonlinear flutter analysis [1]. 

In general, the information about the position of a structural nonlinearity offers 
opportunities to separate the total structure into linear and nonlinear components so 
that they can be separately analyzed. Substructure synthesis method is a structural 
coupling method for combining the substructures represented with reduced degrees of 
freedom (DOF). There have been many studies on the substructure synthesis method [4, 
5]. Hunn introduced the first partial modal coupling method [3]. Craig and Bampton 
treated the displacements of substructures as being composed of constraint modes and 
normal modes [2]. Kim et al. extended Craig-Bampton method to consider 
concentrated structural nonlinearities and then applied the improved method to a 
deployable missile control fin [6]. 

In the present study, the Craig-Bampton method is improved to consider not only 
the concentrated structural nonlinearities but also the sliding mode condition. In order 
to validate the improved coupling method, a numerical plate model consisting of two 
substructures and seven torsional springs is synthesized by using the improved method, 
and its model parameters are compared with analysis data. Then, the coupling method 
is applied to a three-substructure-model with the structural nonlinearity of sliding lines 
between the substructures, and the coupled structural model is verified with dynamic 
results. 

SUBSTRUCTURE SYNTHESIS FOR HINGE JOINTS 

The substructure synthesis method, [2] extended to consider concentrated nonlinear 
hinge joints, is summarized in this section. In order to verify the method, a numerical 
plate model with two substructures and seven torsional springs is synthesized by using 
the improved method, and its model parameters are compared with analysis data. 

Extended Substructure Synthesis Method 

To analyze the dynamic characteristics of a complex structure by using the substructure 
synthesis method, it is necessary to divide the whole structure into a limited number of 
substructures. Each substructure is connected to at least one of other substructures as 
shown in figure 1.  
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Structure  (B)

Structure (C)
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Figure 1 – A scheme of separate structure analysis 
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For an arbitrary linear undamped substructure, the generalized equations of 
motion of Sub-A are written as 
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where the generalized mass and stiffness matrices, and displacement and force vectors 
are partitioned according to the interior ( )R  and interface ( )I  coordinates of the 
substructure. The vector { }IF  is the force vector applied at the interface coordinates by 
adjoining substructures. 

For the simplicity of the problem, it is assumed that the whole structure consists 
of two substructures (Sub-A and Sub-B), and there are no external forces applied to the 
interior coordinates of the substructures. If the two substructures are coupled by 
torsional springs located at some of the interface coordinates, the interface coordinates 
of each substructure can be divided into the coordinates ( )pI  with torsional springs and 
the other coordinates ( )nI  [6]. The generalized equations of motion of Sub-A and 
Sub-B can be expressed as 
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The compatibility equations of the interface coordinates ( , )p nI I  of the two 

substructures can be written as follows: 
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where [ ]Kθ  is a diagonal matrix of the torsional spring coefficients according to each 

pI . Substitution of Eqs. (4), (5) and (6) into Eqs. (2) and (3), and the coupling of these 
equations gives 
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The natural frequencies and eigenvectors of the combined structure with 

torsional springs can be easily obtained from Eq. (7), which can be applied to the 
complex structure problems with several substructures. 

Free Vibration Example 

To verify the extended substructure synthesis method, the free vibration of a cantilever 
plate is considered. The plate has two substructures coupled by a hinge section with 
seven torsional springs as shown in figure 2. Each node has three DOFs, one translation 
and two rotations. The torsional spring coefficient, elastic modulus, density and 
Poisson ratio used for the example are 1 /K Nm radθ = , 72GPa, 32800 /kg m  and 0.33, 
respectively. The frequency range of interest is chosen to be 0Hz to 500Hz. The lowest 
one and seven normal modes are used to represent Sub-A and Sub-B, respectively. 

The natural frequencies and mode shapes calculated by the present extended 
method are compared with those calculated by using MSC/NASTRAN®. Table 1 gives 
the modal parameter results. It is clear that the normal modes of the entire structure are 
accurately obtained by using the extended method. 
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Figure 2 – A scheme of plate model with two components and torsional springs 
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Table 1 – Comparison of Natural frequency between NASTRAN and present method 

Frequency(Hz), Error(%) and MAC 

Mode Nastran Present Error MAC Mode Nastran Present Error MAC

1 

2 

3 

4 

22.26 

99.42 

207.38 

343.55 

22.26 

99.43 

207.41 

344.90 

0.000

0.004

0.016

0.392

1.000

1.000

1.000

0.998

5 

6 

7 

8 

418.12 

508.51 

665.90 

703.20 

418.37 

509.46 

679.08 

708.77 

0.059 

0.188 

1.979 

0.792 

1.000

1.000

0.981

0.994

SUBSTRUCTURE SYNTHESIS FOR SLIDING CONDITION 

The extended substructure synthesis method described in the previous section is 
improved to consider the sliding mode condition. For the validation of the improved 
method, it is applied to a three-substructure-model with the structural nonlinearity of 
sliding lines between the substructures, and the dynamic analysis of the coupled 
structural model is performed for a sinusoidal external force. 

Improved Substructure Synthesis Method 

In order to consider the sliding mode condition, it is assumed that the whole structure 
consists of two substructures (Sub-A and Sub-B), and there is a sliding mode condition 
between the substructures as shown in figure 3. The interface coordinates of the Sub-A 
and Sub-B are the guide line and the roller, respectively, and the roller is restricted to 
follow the guide line. 
 

 

 
Figure 3 – A scheme of separate structure analysis with sliding mode condition 

If the roller coordinate rI  is located between two coordinates, iI  and 1iI + , of the 
guide line, which are assumed to be continuous DOFs, then the generalized equations 
of motion of Sub-A and Sub-B can be expressed in the same manner of Eqs. (2) and (3) 
as follows: 
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where { } { }( ) ( ) ( )B B T B

R N RF F⎡ ⎤= Ψ⎣ ⎦  and ( )B T
N⎡ ⎤Ψ⎣ ⎦  is the normal mode of the Sub-B. 

For the synthesis of the substructures, the compatibility equations of the interface 
coordinates ( iI , 1iI +  and rI ) can be written as follows: 
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where 1l  and  2l  are the horizontal displacements between the interface coordinates and 
the roller as shown in figure 3. Substitution of Eqs. (10), (11) and (12) into Eqs. (8) and 
(9), and the coupling of these equations gives 
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Because the displacements ( 1l  and 2l ) and the interface coordinates ( iI  and 1iI + ) 
adjacent to the roller ( rI ) are changed according to the position of the roller, the mass 
and stiffness matrices have time variable nonlinear properties. By using the improved 
method, the dynamic analysis of the combined structure with the nonlinearity of the 
sliding condition can be easily performed. It can be also applied to the complex 
structure problems with several substructures and guide lines.  

Sliding Condition Example 

For the validation of the improved method, the dynamic analysis of the three- 
substructure-model is performed. The substructures are restricted to each other by the 
sliding conditions as shown in figure 4. The plates have the same material properties 
used in the first example, and the spring coefficient is 1000 /K N m= . The excitation 
forces applied at node-150 are 30 sin(2 70 )yF t Nπ= × × ×  and 500 sin(2 70 )zF t Nπ= × × × .  

Newmark beta method is used to calculate the dynamic response. Figure 5 shows 
the horizontal displacement of node-150, which is composed of the first mode 
frequency (37Hz) and the excitation frequency (70 Hz). Figure 6 shows the dynamic 
motions of the entire structure. It is clear that the dynamic response is adequately 
obtained by using the improved method. 

 

 

Figure 4 – A scheme of plate model with rollers for dynamic response 
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Figure 5 – Dynamic responses of Node 150 for 70Hz excitation. 
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t = 0.01sec   t = 0.02sec                 t = 0.03sec 

 
Figure 6 – Dynamic response motions for 70Hz excitation 

CONCLUSION 

The component mode synthesis method is improved to consider not only the nonlinear 
hinge but also the sliding mode condition. For the validation of the improved coupling 
method, a numerical plate model consisting of two substructures and seven torsional 
springs is synthesized by using the improved method, and then its model parameters 
are compared with analysis data obtained by NASTRAN®. In order to consider the 
structural nonlinearity of the sliding mode condition, the improved method is applied 
to a three-substructure-model with the structural nonlinearity of sliding lines between 
the substructures, and the coupled structural model is verified with dynamic results. 
The analysis results show that the improved coupling method is adequate for the 
structural nonlinear analyses such as the nonlinear hinge and sliding mode condition. 
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