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Abstract 
Based on the concept of the Nonlinear Output Frequency Response Functions (NOFRFs) 
proposed by authors, this paper dedicates to study the resonant phenomena of a class of 
nonlinear systems which can be described by a SDOF model with a polynomial type nonlinear 
stiffness. The concept of resonant frequencies and resonances are proposed for the first time for 
the nonlinear systems. This produces a novel interpretation regarding when significant energy 
transfer phenomena may take place with this class of nonlinear systems. The results are of 
significance for the design and fault diagnosis of mechanical systems and structures which can 
be described by the SDOF nonlinear model. 

INTRODUCTION 

Resonance is a well known concept. In the case of the resonances with a mechanical 
system, the frequency of an exciting force matches the natural frequency of the system 
so that the energy transmission is efficient, and the amplitude of vibration becomes 
significant. The resonance of linear systems has been comprehensively explored, and 
the knowledge about resonances of linear systems has been widely employed in many 
engineering practices [1]. However, in engineering there are considerable dynamical 
systems with nonlinear components, which cannot be simply described by a linear 
mode [2]-[4]. To tackle such nonlinear systems, nonlinear oscillators have been widely 
adopted. For example, the bilinear oscillator, piecewise linear oscillator and cubic 
stiffness oscillator [5] are often used to describe the changes of stiffness with working 
conditions. In engineering practice and laboratory research activities, resonance 
phenomena have been observed in nonlinear systems, which are more complicated 
than in linear systems. The existence of the 1/2 eigenfrequency resonance has been 
confirmed for a cracked object [6], and the 1/3 eigenfrequency resonance has also been 
observed in a system with a nonlinear stiffness [7]. Although the importance of the 
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resonance for linear systems is well-known and the phenomena of resonances have 
been observed in nonlinear systems, surprisingly, there are no equivalent concepts 
about resonances and resonant frequencies for nonlinear systems. 

Nonlinear output frequency response functions (NOFRFs) is a new concept 
recently proposed by the authors [8], which can be considered to be an extension of 
FRF of linear systems to the nonlinear case. The NOFRFs are a one dimensional 
function of frequency, which allows the analysis of nonlinear systems to be 
implemented in a manner similar to the analysis of linear system frequency responses 
and provides great insight into the mechanisms which dominate many nonlinear 
behaviours. In the present study, based on the concept of NOFRFs, the phenomena of 
resonance are studied for a class of nonlinear systems which can be described by a 
SDOF model with a polynomial type nonlinear stiffness.  

NONLINEAR SYSTEMS WITH POLYNOMIAL TYPE STIFFNESS 

In engineering, there are abundant dynamical systems with nonlinear components, 
most of which can be described as a single degree-of-freedom (SDOF) system with 
different nonlinear spring characteristics as shown in Equation (1) [5]. 

)())(()()( 0 tftxstxctxm =++ &&&                                                 (1) 
In Equation (1), m and c are the object mass and damping coefficient respectively; x(t) is 
the displacement, and  )(xs  is the restoring force which is a nonlinear function of x(t). 
Some most commonly used nonlinear restoring force representations can be found in 
reference [5], including the bilinear stiffness oscillator often used to model a crack in a 
beam [9], and the piecewise linear oscillator that is able to model the connection between 
a control surface and servoactuator in an aircraft wing [10], and so on.  

In mathematics, the Weierstrass Approximation Theorem [11] guarantees that 
any continuous function on a closed and bounded interval can be uniformly 
approximated on that interval by a polynomial to any degree of accuracy. Therefore, a 
SDOF nonlinear system whose restore force )(xs is a continuous function of 
displacement x can be described by a polynomial type nonlinear system, as  
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where n is the order of the approximating polynomial, and ik , ),,1( ni L=  are the 
characteristic parameters of the restoring force s(x). In practice, many most commonly 
used nonlinear restoring force representations are a continuous function of displacement 
x, and so can essentially be regarded as a polynomial type nonlinear system. Therefore, 
an investigation of the polynomial type nonlinear systems will be significant for 
understanding complicated nonlinear phenomena in mechanical systems and structures.  

The Volterra series theory of nonlinear systems is the basis of the study of a wide 
class of nonlinear systems including the polynomial type nonlinear system given by 
Equation (2). The concepts of NOFRFs are the frequency domain representations of the 
nonlinear systems which can be described by a Volterra series model. The NOFRFs can 
provide a convenient way to analyze the resonance phenomena of nonlinear systems.  
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NONLINEAR OUTPUT FREQUENCY RESPONSE FUNCTIONS 

Consider the class of nonlinear systems which are stable at zero equilibrium and which 
can be described in the neighbourhood of the equilibrium by the Volterra series 
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where  ),...,( n1nh ττ  is the nth order Volterra kernel, and N denotes the maximum order 
of  the system nonlinearity. The expression for the output frequency response of this 
class of nonlinear systems to a general input can be found in [8]. The result is  
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This expression reveals how nonlinear mechanisms operate on the input spectra to 
produce the system output frequency response. In Equation (3), )( ωjYn  represents the 
nth order output frequency response of the system.  
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is the multidimensional Fourier Transform of   ),...,( 1 nnh ττ  and is called as the 
Generalised Frequency Response Function (GFRF).  

For linear systems, the possible output frequencies are the same as the 
frequencies in the input. For nonlinear systems described by Equation (3), however, the 
relationship between the input and output frequencies is more complicated. Given the 
range of the input frequency, the explicit expression for the output frequency range has 
been given in [8].  

Based on the above results for output frequency responses of nonlinear systems, a 
new concept known as Nonlinear Output Frequency Response Functions (NOFRF) was 
recently introduced in [8]. The concept was defined as 
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under the condition that 
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By introducing the NOFRFs, )( ωjGn , Nn L,1= , Equation (4) can be written as  
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which is similar to the description of the output frequency response of linear systems. 
The NOFRFs reflect a combined contribution of the system and the input to the 
frequency domain output behaviour. According to Equation (6), the NOFRF )( ωjGn  
is a weighted sum of ),...,( 1 nn jjH ωω  over ωωω =++ nL1  with the weights 
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depending on the input. Therefore )( ωjGn  can be used as alternative representation of 
the structural dynamical properties described by nH . There is an effective algorithm [] 
available which allows the estimation of the NOFRFs to be implemented directly using 
system input output data. 

When system (2) is subject to a harmonic input 
)cos()( βω += tAtu F                                             (8) 

It can be deduced that the possible frequency components of  )( ωjYn  are  

nΩ ={ }nkkn F ,,1,0,)2( L=+− ω                                     (9) 
Moreover, it can be known that, under a harmonic loading, the NOFRF )( ωjGn  over 
the nth order output frequency range nΩ  is equal to the GFRF ),...,( 1 nn jjH ωω evaluated 
at kωω ==L1 Fω= , ,1 Fnk ωωω −===+ L  that is 
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the polynomial type nonlinear system (2) can be expressed in a standard form 
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The first nonlinear output frequency response function can easily be determined from 
the linear part of Equation (28) as 
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The NOFRFs up to 4th order can be calculated recursively using the algorithm by 
Billings and Peyton Jones [12] to produce the results below. 
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RESONANCES AND RESONANT FREQUENCIES OF NOFRFS 

The resonances and resonant frequencies of the NOFRF of a nonlinear system 
subjected to a harmonic loading are defined as follows. 

Definition: For the polynomial type nonlinear system (2) subjected to harmonic 
input (16), the resonant frequencies of the system nth order NOFRF  )( ωjGn  are those 

 s'Fω which make any of ))2(( Fn knjG ω+− , n k ,,1,0 L=  reach a maximum, and 
the maxima reached are referred to as the resonances.                                                         

For n =1, ))2(( Fn knjG ω+− , n k ,,1,0 L= , are )(1 FjG ω−  and )(1 FjG ω . In 
order to determine the resonant frequencies, only  s'Fω which make )(1 FjG ω  reach a 
maximum need to be considered. Because )()( 11 FF jHjG ωω = , it can be known that 
the resonant frequency of )(1 FjG ω  is LF ωω = , and the corresponding resonance is 

)()( 11 LL jHjG ωω = . 
For n =2, ))2(( Fn knjG ω+− , n k ,,1,0 L= , are )2(2 FjG ω−  )0(2G  and 

)2(2 FjG ω . Therefore, the resonant frequencies of )(2 ωjG  are the  s'Fω which make 
)2(2 FjG ω  reach a maximum. Equation (13) implies that the resonant frequencies of 

)(2 ωjG  are LF ωω =  and 2/LF ωω = , and the corresponding resonances are 
),(2 LL jjH ωω  and )2/,2/(2 LL jjH ωω . 

For n =3, ))2(( Fn knjG ω+− , n k ,,1,0 L=  are )3(3 FjG ω− , )(3 FjG ω− , 
)(3 FjG ω  and )3(3 FjG ω . Clearly, the resonant frequencies of )(3 ωjG  are the 

 s'Fω which make )(3 FjG ω  and )3(3 FjG ω  reach a maximum. Equations (14) and 
(15) indicate that the resonant frequencies of )(3 ωjG  are LF ωω = and 3LF ωω = , 
and may also include 2LF ωω = , and the corresponding resonances are 

),,(3 LLL jjjH ωωω− , ),,(3 LLL jjjH ωωω ; )3/,3/,3/(3 LLL jjjH ωωω ; and 
)2/,2/,2/(3 LLL jjjH ωωω− , )2/,2/,2/(3 LLL jjjH ωωω .  
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For n = 4, ))2(( Fn knjG ω+− , n k ,,1,0 L= , are )4(4 FjG ω− , )2(4 FjG ω− , 
)0(4G , )2(4 FjG ω  and )4(4 FjG ω . The resonant frequencies of )(4 ωjG  are these 

 s'Fω which make )2(4 FjG ω  and )4(4 FjG ω  reach a maximum. Equations (16)-(23) 
imply that the resonant frequencies of )(4 ωjG  are 4/LF ωω = , 2/LF ωω = and 

LF ωω = , and may also have 3LF ωω = , and the corresponding resonances 
are )4/,4/,4/,4/(4 LLLL jjjjH ωωωω ; )2/,2/,2/,2/(4 LLLL jjjjH ωωωω , 

)2/,2/,2/,2/(4 LLLL jjjjH ωωωω− ; ),,,(4 LLLL jjjjH ωωωω , ),,,(4 LLLL jjjjH ωωωω− ;  
and )3/,3/,3/,3/(4 LLLL jjjjH ωωωω , )3/,3/,3/,3/(4 LLLL jjjjH ωωωω− . 
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Figure 1- The NOFRFs of a nonlinear system with a 4th order polynomial type stiffness 
under a harmonic loading.  

Figure 1 gives the NOFRFs of a nonlinear system with a 4th order polynomial 
type stiffness. The system parameters are 12.0=ς , 100=Lω rad/s,  3002 =ε , 

4
3 105×=ε , 5

4 109×=ε . Clearly, the above general analysis is confirmed by this 
specific example. 

PHYSICAL IMPLICATION OF RESONANT FREQUENCIES OF NOFRFS 

In the study of the resonance of linear mechanical systems, it is known that when the 
driving frequency of the force matches the natural frequency of a vibrating system, the 
energy transmission is efficient, and the amplitude of the vibration becomes 
significant. Similarly, for nonlinear system which can be described by the polynomial 
type nonlinear model (11), when the system subjected to a harmonic input and the 
driving frequency Fω  coincides with one of the resonant frequencies of a NOFRF of 
the system, the magnitude of this NOFRF will reach a maximum (resonance) at a high 
order harmonic of Fω . Consequently, considerable input signal energy may be 
transferred by the system from the driving frequency to the higher order harmonic 
component. For example, when system (11) is subjected to a harmonic excitation with 
driving frequency 2/LF ωω = , which happens to be the resonant frequency of )(3 ωjG  
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and )(2 ωjG , a considerable input energy may be transferred through the 2nd order 
NOFRF and the 3rd order NOFRF from the driving frequency 2/Lω  to the 2nd order 
harmonic component LL ωω =)2/(2 and the 3rd order harmonic component 2/3 Lω  in 
the output. To demonstrate this, two harmonic inputs at the frequencies of 

( ) LF ωω 2/3=  and 2/LF ωω =  were used respectively to excite system (11) with ς  = 
0.10, and the other system parameters are the same as those used in last section. As 
Equations (7) and (10) indicate, if N = 4, then the 2nd, 3rd and 4th order harmonics could 
appear in the system output frequency response, and the output spectrum can 
analytically be described as 

)()()()()( 3311 FFFFF jUjGjUjGjY ωωωωω +=                            (24) 
         )2()2()2()2()2( 4422 FFFFF jUjGjUjGjY ωωωωω +=                   (25) 

                       )3()3()3( 33 FFF jUjGjY ωωω =                                                                  (26) 
 )4()4()4( 44 FFF jUjGjY ωωω =                                                        (27) 

As frequency 2/Lω  is the resonant frequency of )(2 ωjG  and )(3 ωjG , which 
could make ( )2/22 )(

L
jG

ωω
ω

=
 and ( )2/33 )(

L
jG

ωω
ω

=
 reach a maximum, according to 

Equation (25) and (26), it is known that the 2nd and 3rd harmonic components of the output 
spectrum could be considerable when 2/LF ωω = . In contrast, when 2/3 LF ωω =  which 
is not the resonant frequencies of any of the NOFRFs involved in Equation (24)-(27), a 
significant high order harmonic response should not be expected in the system output. 
Figure (2) shows the spectra of the forced responses in the two cases of 2/LF ωω =  
and 2/3 LF ωω = , which were obtained by integrating equation (11) using a 
fourth-order Runge–Kutta method. It can be seen from Figures (2) that the 2nd and 3rd 
harmonic components in the case of  2/LF ωω =  are considerably more significant 
than in the case of LF ωω 2/3= . 
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Figure 2- An illustration of the physical implication of  
the resonant frequencies of NOFRFs 

These observations lead to a novel interpretation regarding when significant 
energy transfer phenomena may take place with nonlinear systems subjected to a 
harmonic input. The interpretation is based on the concept of resonant frequencies of 
NOFRFs, and concludes that significant energy transfer phenomena may occur with a 
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nonlinear system when the driving frequency of the harmonic input happens to be one 
of the resonances of the NOFRFs. 

CONCLUSIONS  

Based on the novel concept of NOFRFs, this paper dedicates to introduce the concept 
of resonances and resonant frequencies for SDOF nonlinear systems with a polynomial 
type stiffness, which can model a wide range of practical vibration components with 
nonlinear stiffness characteristics. Then the study gives, for the first time, the 
definitions of the resonances and resonant frequencies of nonlinear systems, and 
reveals that all higher order NOFRFs generally have more than one resonances which 
usually appear when the driving frequency happens to be Lω , Lω2/1 , Lω3/1 , Lω4/1 , 
and so on with Lω  being the natural frequency of the system. This is an important 
conclusion regarding the resonant phenomenon of the polynomial type nonlinear 
systems, and is of practical significance for the system design. 
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