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Abstract 
Nowadays, shell-type structures are widely used as a part of the turbo-machines. These 
structures have different curvatures, which are the main feature relative to the beam or plate 
models. Thus, shell models are preferable to beam or plate models because the shell models 
consider the effect of surface curvatures. The purpose of this study is to analyze the free 
vibration characteristics of a rotating blade subjected to the centrifugal force, Coriolis 
acceleration and thermal loads. In this study, general formulation is proposed to analyze the 
initially twisted rotating shell-type blades in thermal environment, and the finite element 
method is adopted for solving the governing equations. 

INTRODUCTION 

In aeronautical and aerospace engineering, rotating blades are the main structural 
members of turbo-machines. Because these blades must perform efficiently with high 
specific strength, they must undergo vibration analysis. Thus, the vibration analysis of 
turbo-machinery blades has been widely investigated, and has been part of the 
investigations in numerous publications. 
Nowadays, shell-type structures are widely used as a part of the turbo-machines. These 
structures have different curvatures, which are the main feature relative to the beam or 
plate model. Thus, shell models are preferable to beam or plate models because those 
can’t consider the effect of surface curvature. Leissa and his co-workers did extensive 
researches that greatly help in assessing the vibration characteristics of shell type 
turbo-machinery blades [1-4]. Those methods in references can be used for analyzing 
blades with relatively small double curvatures accurately, but are inadequate for blades 
with large curvatures and twists. 
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For decades, there have been considerable activities in the analysis of shell structures 
by the finite element method. Henry et al. [5] summarized the important literatures on 
shell finite elements that have been developed in decades. Ahmad et al. [6] introduced 
the concept of the continuum based degenerated shell element, and treated shells of 
arbitrary shapes without adopting complicated assumptions for specific shell theories. 
The popularity of this concept due to their simplicity in the formulation, many 
researchers has been developed and improved the behaviour of that element. The 
geometric and material nonlinear analysis of shells was extended by Ramm [7] and 
Bathe and Bolourchi [8]. Huang and Hinton [9] presented a new nine-node degenerated 
shell element, which adopts an enhanced interpolation to overcome the locking 
phenomenon. Recently, Lee and Han [10] investigated the free vibration of plates and 
shells by using the assumed natural strains. 
The purpose of this study is to analyze the vibration characteristics of rotating 
shell-type blades subjected to the centrifugal force, Coriolis acceleration and thermal 
loads. In this study a general formulation is proposed to analyze the initially twisted 
rotating shell-type blades in thermal environment. The blade is assumed to be a 
moderately thick shell which includes the transverse shear deformation and rotary 
inertia, and is oriented arbitrarily about the axis of rotation to consider the effects of 
disk radius and setting angle. In the numerical study, the effects of the various 
parameters are investigated; initial twists, rotating speeds, disk radius and thermal 
boundary conditions. 

FORMULATION 

Basic Assumptions 

In this study, we will use the assumptions as, 
▪ A straight normal to the mid-surface before deformation remains straight after 

deformation, and the transverse shear deformation is considered. 
▪ A stress component normal to the shell mid-surface is negligible. 
▪ Thermo-mechanical properties of the blade are independent of the temperature, 

and the thickness temperature gradient of the blade is negligible. 

Geometry and Deformation of Shell Element 

The position vector X  of a generic material point P in the undeformed configuration, and 
the unit nodal vectors and the coordinates adopted in this study are depicted in Figure 1. 
The position vector X  can be expressed as 
 0 3z= +X X e  (1) 
where 0X  is the position vector of a point O on the shell midsurface and 3e  the unit 
normal vector of the shell midsurface. Using the nondimensional coordinate ς  with 
respect to the thickness t  of the shell, Eq. (1) is changed as follows 
 ( )0 3/ 2tς= +X X e  (2) 
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Figure 1−Kinematics of shell deformation 

The line segment OP  changes to 'OP , and then 3ze  rotates 3'ze  after deformation. 
Then the displacement vector U of a generic material point P can be written as 
 '

0 3 3; ( ) / 2tς ςς= + = −U U U U e e  (3) 
In this study, we used the isoparametric nine-node element. Five degrees of freedom 
are defined at each nodal point corresponding to its three translational displacements 

0u , 0v , 0w  and two rotational degrees of freedom α and β .  

Thermal-Structural Interface 

We assume that the heat conduction occurs in a rotating blade with velocity components 
( xγ , yγ ), and no internal heat generation and radiation; hence the governing equation 
of steady state heat conduction can be derived as 

 
2 2 2

2 2 2 0x y z p x p y
T T T T Tk k k c c

x y z x y
ρ γ ρ γ∂ ∂ ∂ ∂ ∂

+ + − − =
∂ ∂ ∂ ∂ ∂

 (4) 

The Galerkin weighted residual method is applied to the equation (4) to obtain the 
finite element equation. Then, one can derive the following equation in the form as 
 ( )cn cv h+ =K K T P  (5) 
where cnK , cvK  and hP  denote the heat conductance matrix, heat convectivity matrix 
and the heat flux vector, respectively. In addition, the stress-strain relationship with 
respect to the global coordinate system can be written as 
 ( ) or ( )t= − = −σ E ε Tα σ E ε ε  (6) 
in which σ , E , α , ε  and tε  are, respectively, the stress, material property matrix, 
thermal expansion coefficient vector, the total strain and the thermal strain vectors. 

Governing Equation 

The coordinate nodal values were used to interpolate the position and displacement 
vectors, and these vectors are expressed as follows 

 
9 9 9 9

0 3 0
1 1 1 1

[ ] , [ ]
2 2i i i i i i

i i i ii i

t tN N N N ζς ς
= = = =

⎡ ⎤ ⎡ ⎤= + = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑ ∑ ∑X X e U U U  (7) 
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The covariant displacement components in the natural coordinate system are obtained 
by projecting the displacement components expressed in the global Cartesian coordinate 
system onto the natural coordinate directions, which are expressed as 

 
i

i
x

α αξ
∂

=
∂

u u  (8) 

where repeated indices denote the summation ( 1,2,3, , ,i α ξ η ς= = ). Equation (9) can 
also be rewritten in a matrix form as  
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J  (9) 

With rotational motionΩ , the velocity vector of any arbitrary point of the blade may be 
written as 
 /d dt= + ×v r Ω r  (10) 
To derive the governing equation of motion, Hamilton’s principle is used as 

  1

0

( ) 0
t

t
T U dtδ δ− =∫  (11) 

The variation on the strain energy U  and kinetic energy T  can be written as 

 
v xx xx yy yy xy xy yz yz xz xzU E E G G G dVδ δε ε δε ε δγ γ δγ γ δγ γ⎡ ⎤= + + + +⎣ ⎦∫  (12) 

 
_ _ _

v
{ }u v wT P u P v P w dVδ ρ δ δ δ= − + +∫  (13) 

Hence the governing equation is derived as 

 ( )
.. .

l g cf t cf+ + + + + =M q C q K K K K q F  (14) 

where M ,C , lK , gK  and tK  are the mass matrix, the Coriolis matrix, the linear stiffness 
matrix, the geometric stiffness matrix and thermal stiffness matrix, respectively. In 
addition, cfK  and cfF  are the stiffness matrix and the force vector due to the 
centrifugal force. 
For the dynamic analysis, the solution of equation (14) is separated to the static and 
time dependent terms. Then the displacement vector q  may be expressed as ( )s t= +q q δ , 
where sq  and ( )tδ  denote the static solution and a small time dependent perturbation 
about the static equilibrium state, respectively. Thus, we can obtain the perturbed equation 
as follows: 
 ( )l g cf t+ + + + + =Mδ Cδ K K K K δ 0&& &  (15) 
To derive the eigenvalue problem, equation (15) is transformed into the following 
form: 
 − =A g B g 0&  (16) 

where 
⎡ ⎤
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Table 1−Natural frequencies (Hz) of the open cylindrical shell-type blade 
Ref.[2] Ref.[11] Mode 

Number Present 
Analytic Sol. Experiment FEM 

1 85.4 85.9 85.6 86.6 
2 139.7 137.8 134.5 139.2 
3 251.8 248.6 259.0 251.3 
4 347.7 342.9 351.0 348.6 
5 391.6 378.4 395.0 393.4 

NUMERICAL RESULTS 

Validation of the Model 

The shell element has been used for the analysis of the vibration characteristics of 
initially twisted shell type blades. The blade is assumed to be a moderately thick shell 
which includes the transverse shear deformation and rotary inertia, and a shear 
correction factor 5/6 is used in the analysis.  
Table 1 shows the quantative comparisons of lowest five natural frequencies of a 
non-rotating steel fan blade. The natural frequencies obtained by the present shell 
elements are compared with the results in Ref. [2. 11], and agree well with those of 
reference data. Figure 2 shows the non-dimensional frequency parameters of twisted 
plate-type blade models, and the present model is same as in Ref. [12]. The symbols 1B, 
2B denote spanwise bending frequencies, 1T the torsional frequency, 1EB the 
edgewise bending frequency and 1CB the chordwise bending frequency. The present 
results display quite good agreements with the reference data. 
To confirm that the numerical procedure is practical for analyzing the thermal-structural 
interaction, the present results are compared with those of the analytic calculation in 
Ref. [13]. The quantative comparisons of temperature distribution of a plate that was 
subjected to the Dirichlet boundary conditions are shown in Figure 3. The results 
between the previous work and the present data are almost the same. 

Application of the Model 

Figure 4 depicts the configuration of a rotating shell-type blade model for the present 
study. Dimensionless parameter Ω  denotes the ratio of rotating speed with respect to 
the fundamental natural frequency of the non-rotating blade. In addition, the local 
coordinate system (x, y, z) has the offset from the global Cartesian coordinate system (X, Y, Z) 
by translation (hi, hi, hk) and rotation ( , ,i j kθ θ θ ).  
 
Table 2 − Material properties of rotating blade for numerical study  

Properties Values Properties Values 
Elastic Modulus E=200GPa Chord Length a(tip), b(root)=30.5cm
Shear Modulus G=E/2(1+υ) Blade Radius Ry=2a 

Density ρ=7,680Kg/m3 Blade Thickness t=a/100 
Poisson’s Ratio υ=0.3   
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Figure 2− Normalized frequency parameters               Figure 3− Comparison of temperature 
of the plate-type blade ( 2 /a h Dλ ω ρ= )                      distribution (m,n=5, Ts=100℃, Lx=5) 

 

 

Figure 4−Geometry of a initially twisted shell-type blade model attached to a rigid hub 

Figure 5 shows the natural frequencies of rotating blade with the initial twist ψ .  
Dimensionless rotating speed Ω  varies from 0.0 to 2.0 and is defined as / NRω ωΩ = . 
This figure shows that as increase in the rotating speed of a blade, the higher natural 
frequencies are acquired. As is well known, this behavior means that the blade was 
stiffened by the blade’s rotation and can resist further bending and twisting deformation. 
In this figure, as the initial twists are increased, the bending frequencies of non-rotating 
blade ( 0Ω = ) tend to decrease, gradually. As the blade starts to rotate, the increase rates 
of bending frequencies are changed dramatically. In addition, the torsional frequencies 
are increased with the initial twist and rotating speed. 
Most turbo-machinery blades are operated in a thermal environment. Thus, we must 
consider the elastic deformations of the blade due to the thermal disturbances. The following 
material properties of an aluminum alloy 2024 6-T were used in the numerical study.  
 
Table 3− Material properties for thermal analysis 

Properties Values Properties Values 
Elastic Modulus E=75.0GPa Conductivity k=177W/m·K 

Density ρ=2,770Kg/m3 Specific Heat Cp=875J/kg·K 
Poisson’s Ratio υ=0.33 Thermal Exp. Coef. α=73×10-6/K 



ICSV13, July 2-6, 2006, Vienna, Austria 

 
 
 
 
 
 
 
 
 
 
 

 
(a) 1st Bending mode                                          (b) 1st Torsional mode 

Figure 5− Frequency variations of a rotating blade with the initial twist  
The rotating blade is often exposed to heat flux. In this case, one must consider the 
velocity components because of the convectional effects. Figure 6 shows the variations 
of natural frequencies of a rotating blade subjected to thermal constraints. The blade 
base is maintained at a constant temperature (300K), and the heat flux is applied to the 
leading edge of blade. From the results, the calculated normalized frequencies are 
falling down with surrounding temperature, gradually. This is because the temperature 
variation weakens the stiffness of the blade, thus the lower frequencies are generated. 
Figure 7 displays the variation in the calculated natural frequencies with different disk 
radius. Dimensionless parameter lr which varies from 0.5 to 2.0 implies the ratio of disk 
radius with respect to the blade chord length and is defined as lr=hi/a. In general, the 
convectional effects depend on the velocity components ( xγ , yγ ), and those velocity 
components are linearly proportional to the disk radius. Thus, lower frequencies are 
expected when the disk radius increases. However, numerical results indicate that the 
disk radius seems sensitive to the natural frequencies in this case. This behavior reveals 
that the convectional thermal effects with the velocity components are smaller than the 
inplane centrifugal hardening effects induced by blade’s rotation. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6− Frequency variations upon              Figure 7− Frequency variations as a function  

 the surrounding temperature                              function of the disk radius (q=1,000W/m2) 
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CONCLUSIONS 

In this study, a general formulation is proposed to analyze the vibration characteristics 
of initially twisted rotating shell-type blades, and the finite element method is adopted 
for solving the governing equations. The effects of the various parameters were 
investigated, such as initial twist, rotating speed, disk radius and thermal constraints. 
For an initially twisted non-rotating blade, the bending frequencies tended to decrease, 
whereas the torsional frequencies are increased with the initial twist. As the blade starts to 
rotate, the higher natural frequencies are acquired. The centrifugal force due to the 
blade’s rotational motion affects vibration characteristics of blade, dominantly. As the 
initial twisting angles are increased, the bending frequencies tend to decrease gradually, 
but the increase rates of bending frequencies are changed dramatically. In addition, the 
torsional frequencies are increased with the initial twist. The calculated normalized 
frequencies are falling down with surrounding temperature, and the disk radius seems 
more sensitive to the natural frequencies than the convectional thermal effects. 
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