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Abstract 
Periodic structures can be applied as a MEMS(micro-electro-mechanical system) sensor or 
actuator due to low energy loss and wideband frequency response. The dynamic behavior of a 
mistuned periodic structure is dramatically changed from that of a perfectly tuned periodic 
structure. The effects of mistuning, coupling stiffness, and driving point on the forced vibration 
responses of a simple periodic structure are investigated through numerical simulations. On the 
basis of that, one can design effective and reliable MEMS components using periodic 
structures. 

INTRODUCTION 

Periodic structures with cyclic symmetry can be found in several engineering systems. 
Aircraft rotor, turbine blades, satellite antenna dishes, and large space structures are 
some examples of these structures [1-4]. Recently, such structures are applied as 
micromechanical devices for communications due to high quality factor Q and 
broadband characteristics as shown in Fig.1 [5,6]. Practically, the structural identity in 
substructures is often destroyed by small differences that result from manufacturing 
and material tolerances. This deviation from the ideal has been observed to cause 
localization. When localization occurs, energy is confined near the disordered 
substructure and the dynamic behavior of the structure is drastically changed. In 
general, most of the previous studies show that mistuning may result in undesirable 
effects and investigated at the viewpoint of modal response of the overall structure 
[1-3]. However, when a periodic structure is applied in MEMS, the dynamic behavior 
of each substructure is more important than that of the whole structure.  

In this paper, the combined effects of mistuning and coupling stiffness on 
vibration behavior of each substructure are investigated. The primary objective of the 
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present study is to investigate the effects of mistuning, coupling stiffness, and driving 
point on the forced vibration response of each mass in the structure. Therefore, it can be 
used as valuable guidelines for effective and reliable designs of general periodic 
structures applied in MEMS. 

 

 
 

Figure 1 – (a) Schematic diagram of a MEMS filter  

      (b) Equivalent mechanical model 

A SIMPLE MODEL OF A PERIODIC STRUCTURE 

A periodic structure consists of identical substructures that are joined to each other in a 
consistent manner to form the overall structure. Practically, ideal periodicity of the 
overall structure is often influenced by small differences in the substructures that result 
from manufacturing and material tolerances. Fig. 2 shows a simple example of a 2 
degree of freedom near-periodic structure. Each substructure has the same mass, 
slightly different stiffness, and coupled by identical coupling stiffness.  

The equation of motion of the structure is  
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Eq. (1) can be rewritten with parameters as follows. 
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Figure 2 – A 2-degree-of-freedom near-periodic structure  

The natural frequency ratios of Eq.(2) are 
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where ( )22 14 βαδ −+= ,  ω1 and ω2 are natural frequencies of the system. 
The modal matrix is 
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The columns of the modal matrix are the actual mode shapes. 

Modal characteristics of the tuned system 

If substructures are exactly same (β =1), then natural frequency ratios are 
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The modal matrix is 
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Eq. (6) and (7) show that the first natural frequency ratio is independent of the 

coupling stiffness ratio α and the space between two natural frequencies depends on α. 
Eq. (8) means that, in the first mode, both masses vibrate in the same amplitude and 
same direction whereas each mass vibrates in the same amplitude and opposite 
direction in the second mode. 

Modal characteristics of the mistuned system 

In this section, the effect of mistuning on the dynamic characteristics of the 2 
degree-of-freedom system is examined. The sensitivity of the natural frequency ratios 
to stiffness imperfection ratio β are obtained by taking the derivative of r2 with respect 
to β for the simplicity. 
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ratio changes, whereas the square of the second natural frequency ratio changes as 
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The sensitivity of the mode shapes to stiffness imperfection ratio β are 
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Figure 3 – Frequency ratios r due to β 

Fig. 3 shows the variations of natural frequency ratios as α and β change. As we 
expect from Eq. (9) and (10), when β <1 we get a linear relationship between the r1 and 
β with small α(=0.01), whereas, when β >1, the r1 doesn’t change with small α. The r2 
shows similar characteristics with r1. The mode shapes in Fig.4 shows similar 
characteristics as α and β change. 

Consequently, if we apply this characteristics as a sensor in which one of 
substructure stiffness values varies with a physical input, we can measure the physical 

β β 

r1 r2 
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phenomena by measuring changes in the natural frequency and response amplitude. 
 

 
 Figure 4 – Mode shapes due to β 

FORCED RESPONSE OF THE SIMPLE MODEL 

When we consider damping C and force F in substructures, the equation of motion of 
Fig. 2 is 
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The steady-state response of Eq. (13) due to harmonic forces of frequency ω can 

be expressed as follows. 
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The tuned system 

The effects of the coupling stiffness on the forced vibration response of the tuned 
system are investigated. Fig. 5 shows the amplitude of each mass, when a harmonic 
force is subjected to #1 mass (f1=1, f2=0) with the damping factor ζ =0.01. It shows that 
as α increases from 0, the maximum amplitude of #1 mass goes down whereas that of 
#2 mass goes up, which means that input energy cannot transfer from #1 mass to #2 
mass in case that coupling stiffness is weak comparing to damping factor. 
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Figure 5 – Forced responses of the tuned system 

 
Figure 6 – Forced responses of the mistuned system with α =0.05 

The mistuned system 

The effects of mistuning on the forced vibration responses are investigated. Fig. 6 
shows amplitudes of each mass, when a harmonic force is subjected to #1 mass. The 
coupling stiffness ratio α =0.05 and damping factor ζ =0.01 are used for numerical 
simulation. 

When β =1.1, the amplitude of mass #1 is a little higher than that of #2 because 
all the motional energy of #1 can not transfer to #2 due to damping. When β =1.1, the 
natural frequency ratios are 1.015 and 1.082 from Eq. (3) and (4), and u21= 0.4, u22= 
−2.4 from Eq. (5). At the first mode, the amplitude ratio between masses satisfies Eq. 
(5) whereas the second mode doesn’t satisfy it. It means that if the exciting frequency is 
not close to the natural frequency of the #1 substructure, then the vibration energy of #1 
mass is not enough to excite #2 mass because of damping. When β =0.9, the figure 
shows a sort of symmetrical phenomena to the former case. 

Consequently, when the forcing frequency is close to the natural frequency of the 
excited substructure, we can get larger amplitude of the excited mass and the motional 
energy is enough to excite the entire structure in its mode shape. 
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CONCLUSIONS 

The effects of mistuning, coupling stiffness, and driving point on the forced vibration 
response of each mass in a periodic structure with 2 degree-of-freedom are 
investigated. 

In case of weak coupling stiffness, there is a linear relationship between 
variations of substructure stiffness and natural frequency, mode shape. Consequently, 
this structure can be applied as a MEMS sensor if the substructure whose stiffness 
varies with the input physical condition is excited as a driving point. Then we can get 
larger response amplitude in addition to linear variations of the frequency and 
amplitude than the conventional structures. And it is found that vibration localization 
can even occur in the perfect periodic system with relatively weak coupling stiffness to 
damping factor. So, high Q factor is necessary when this structure is used as a MEMS 
filter. 
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