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Abstract

One of the major issues in broadband feedforward active noise control is secondary path

inversion. The Multi Input Multi Output Inversion Theorem (MINT) states that it is possible

to invert non-minimum phase transfer functions, as long as there are more input channels than

output channels, and that there are no common zeros in the paths. In active noise control this

means that apart from true delays in the system, non minimum phase secondary paths can be

inverted as long as there are more anti-noise sources than error sensors. However, this violates

a common rule of thumb that is used to guarantee a reasonably large quiet zone: that the

number of error sensors should be twice the number of anti-noise sources. In previous papers

a new technique that limits the control bandwidth was proposed to prevent the reduction

of the quiet zone size for systems with more anti-noise sources than error sensors. In this

paper the new technique is analyzed for sensitivity to secondary path modeling errors. For

no secondary path modeling errors the effect of the secondary path is actually removed and

the algorithm has exact the same convergence properties than the underlying algorithm used

to update the control filter, namely the LMS, RLS, LSL or other. It is shown that the new

structure is less sensitive to secondary path modeling errors than the FX-LMS, or the MFX-

LMS algorithm. In fact it is shown that the allowed secondary modeling errors increase as

the control bandwidth decreases. The results are obtained using narrow band analysis which

results in a big simplification but still maintains enough information about the dynamics of the

system to give useful results. Finally the results are confirmed throw computer simulations.
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INTRODUCTION

Active noise control (ANC) system generate sound waves with opposite phase to the noise

(anti-noise) that interfere destructively with it to reduce the noise level [1,2] in a given region

called “quiet zone”. A feedforward active noise control systems are represented in Fig. 1. The

reference sensors measure the noise signals, xi(t), at some points so that it can be used to

predict the noise signal at the error sensors. This signal is sampled and digitally processed by

a digital signal processor (DSP), which implements the ANC controller. The ANC controller

produces the anti-noise signals, yj(t). These signals are then fed to the anti-noise transducers

and travel through the physical medium, usually air, to the error sensors. The error sensors

measure the error signals, ek(t), which are used to adapt parameters of the ANC controller.

The path traveled by the anti-noise signal, from the transducers to the error sensors is the

cancellation or secondary path, S(f).

In order to achieve larger quiet zones, many active noise control systems are multi-

channel, with several reference sensors, anti-noise transducers and error sensors. The system

represented in Fig. 1 have N reference sensors, P anti-noise sources and M error sensors.

Fig. 1 represents the Modified Filtered X Least Mean Squares algorithm (MFXLMS) [3,4,6].
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Figure 1: MFXLMS algorithm for feedforward Active Noise Control.

It should be noted that the cancellation path estimate, Ŝ(f), includes the anti-aliasing and

reconstruction filter. In the MFXLMS algorithm the anti-noise signal is subtracted from the

error signal ek[n], resulting in dk[n], which is then used as a desired signal to the LMS algo-

rithm. Thus, the effect of the cancellation path is actually removed, as along as the estimate is

accurate. It will allow the implementation of the anti-noise band limiting action.

It can happen that the quiet zone of an active noise control system degenerates, re-

sulting in very small quiet zone around the error microphones. In order to prevent this many

systems use several error sensors per anti-noise source, two as a rule of thumb, so that if one

anti-noise source is able to achieve noise reduction in two sensors then it should be creating

a fairly large quiet zone. However, in order to achieve better cancellation path inversion, it is

desirable to have more anti-noise transducers than error sensors, as stated by the Multi Input

Multi Output Inversion Theorem (MINT) [7]. It is a know fact that the dimension of the quiet

zone is related to the wavelength of the noise under consideration. For example, in narrow-
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band single-channel active noise control systems in a diffuse sound field the quiet zone has a

radius of about one tenth of the wavelength, λ/10 [8]. So, in order to solve this contradictory

requirements, we propose techniques to limit the control bandwidth of the system (the maxi-

mum anti-noise frequency), that will prevent quiet zone degeneration while still allowing the

application of the MINT theorem.

LIMITING THE ANTI-NOISE FREQUENCY

In order to limit the anti-noise signal frequency we propose to use the modified filtered-x con-

figuration to change the desired signals (which correspond to the desired anti-noise signals)

to a band-limited version of the originals. This is presented in Fig. 2. In this configuration the

band limiting action is implemented by the controller. It will adapt into a band limiting filter

that removes the high frequency components of the anti-noise signal, i.e., the controller will

adapt to minimize the error signal,

Sxx(f)P (f)A2(f)F (f) − Sxx(f)A1(f) e−ωDFj Ŝ(f)W (f). (1)

The optimal filter, disregarding causality constrains, is then given by,

W (f) = P (f)/Ŝ(f)F (f) eωDFj (2)

with Ŝ(f) = S̃(f). This is the band limited version of the optimal controller as desired. Note

that DF is the group delay of the filter F , and so F (f) eωDFj is a filter with no group delay.

Variations of this configuration were presented in [9].

 

y�(n) 

z�(n) 

u�(t) 
digital 

analog 
S(f) 

 )(ˆ fS

P(f) 

F(f)  )(ˆ fS

W(f) 

A�(f) 
A�(f) R(f) 

 ���
e

ω−

- 

- 

W(f) 

x�(n) 

P 

M 

N e�(n) 

Figure 2: Block diagram of the proposed algorithm, using a filtered desired signal (Configu-

ration I).
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EFFECT OF THE CANCELLATION PATH ESTIMATION ERRORS

In order to simplify the results, a one-channel narrowband analysis will be presented. The

analysis is similar to the one in [6], but extended to the new algorithms presented in the paper.

In frequency-domain analysis [10,11] only the amplitude and phase response of the system is

taken into account. However in active noise control systems, the delay in the cancellation path

can have a large influence on the behavior of the systems. In narrowband analysis, the group

delay is also taken into account. The signal is taken to be a narrowband amplitude-modulated

signal with a given carrier frequency, so the system will alter the carrier phase and delay

the modulated signal [12]. More exactly, the secondary path will be defined by amplitude S,

phase θS and delay d, which correspond to the complex amplitude Sz , and a group delay d,

at a given frequency. The band limiting filter will also be defined by the amplitude, phase,

and group delay, F , θF , DF . Narrowband analysis results in much simplification, but it still

maintains information about the dynamics of the system to provide some useful insight. The

equations will be first derived for a sinusoidal input, as follows.

Define the modulated signals, filtered reference signal, x′[n], and innovation signal,

α[n], in terms of the baseband signals x′

z[n] = x′

A[n] eφx and αz[n] = αA[n] eφα[n] centered

at carrier frequency ω0,

x′[n] = x′

A[n] cos(ω0 n + φx) (3)

α[n] = αA[n] cos(ω0 n + φα[n]) (4)

for all proposed algorithms the L-tap controller filter, ωk[n], for k from zero to L − 1, is

updated as,

wk[n] = wk[n − 1] − µx′[n − k] α[n] (5)

where µ is the step size of the algorithm. Now we have,

x′[n − k] α[n] =
1

2
x′

A[n − k]αA[n] (cos(φx − ω0 k − φα[n]) +

cos(2ω0 n + φα[n] − ω0 k + φx)) (6)

the last cosine terms can be neglected for small step sizes, since it is of high frequency

and should be filtered by the update equation of the filter. Since the input signal is around

frequency ω0, the controller response at this frequency is of most interest. Calculating the

discrete-time Fourier transform of the controller at z = ejω0 results in,

ŵz[n] =
L−1
∑

k=0

wk[n]e−jω0k, (7)

and

ŵz[n] = ŵz[n − 1] − µ
Lx

2
x′∗

z[n − dL] αz[n], (8)

with

Lx = ej2φ[n] ejω0(L−1) sin(ω0L)

sin(ω0)
+ L and dL = (L − 1)/2 (9)
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For ω0 = kπ/L, L = Lx. For large L, Lx is approximately real and Lx ≈ L. This equation

was derived taking into account that x′

A[n] is mostly constant. The procedure that follows is

similar to the one in [6] with some modifications, namely now taking into account the effect

of Lx, dL, and, most importantly of the band limiting filters. For Configuration I, in Fig. 2,

we can write,

ŵz[n] = ŵz[n − 1] − µx x∗

z[n − dL − d̂ − DF ]Ŝ∗

zαz[n] (10)

where µx = µLx/2. The secondary path model is defined by placing a hat over the corre-

sponding symbols for the secondary path, namely, Ŝ, θŜ d̂, Ŝz . The innovation term is given

by,

αz[n] = xz[n− d−DF − dwo]wzoSzFz +xz[n− d−DF − dw]ŵz[n− 1− d−DF ]SzFz

−xz[n− d̂−DF −dw]ŵz[n−1− d̂−DF ]ŜzFz +xz[n− d̂−DF −dw]Ŝzŵz[n−1]+r[n]

(11)

where dw is the delay of the controller filter and r[n] is a measuring noise term, which is

uncorrelated with the reference signal. In this paper, only the convergence of the mean is going

to be studied. Replacing α[n] in (10), taking expected values, and letting Rd̂d̂ = E{x∗

z[n −

dL − d̂−DF − dw]xz[n− d̂−DF ]}, Rd̂d = E{x∗

z[n− dL − d̂−DF − dw]xz[n− d−DF ]}

and taking the Z-transform [13], one obtain,

E{ŵz(Z)} =
µxFzRd̂dŜ

∗

zSzZ

Z − 1 + µx |Ŝz|2 RX

wzo(Z) (12)

with,

RX = Rd̂d̂(1 − FzZ
−d̂−DF ) + FzRd̂dSz/Ŝz Z−d−DF . (13)

Using this equation, one can express µx as a function of Z, µx = Γ(Z), where Z is a pole

of the system. This means that if a pole of the adaptive filter convergence is known, then it

is possible to calculate the step size used by the algorithm. However, in general this function

has no inverse, since there are several modes of convergence, or poles, for a given step size.

Nonetheless, for the case of very small step sizes, the convergence is dominated by a single

pole, near Z = 1, and the inverse exists. Using the rule for the inverse of the implicit function,

that is,

F (µx, Z) = 0 ⇒
∂Z

∂µx
= −

F 1(µx, Z)

F 2(µx, Z)
(14)

one can obtain a linear approximation for very small step sizes. In this equation, F 1(µx, Z)

represents the derivative in terms of the first argument and F 2(µx, Z) is the derivative in terms

of the second argument of the function. Since, once more, the algorithm is dominated by the

pole at Z = 1, calculating the partial derivative for Z = 1 and µx = 0 one gets,

Z(µx) ≈ Z(0) − µx
∂Z

∂µx
= 1 − µx

[

(1 − Fz)Rd̂d̂|Ŝz|
2 + FzRdd̂SzŜ

∗

z

]

The equation should be analyzed for the case when the signals are inside the noise reduction

band, with Fz = 1 and outside of the noise reduction band Fz = 0. If the reference signal is



Paulo A. C. Lopes, Moisés S. Piedade

not narrowband then it can be split into two signals inside and outside of the noise reduction

band. We will assume that µx is real and greater than zero. This is not actually true because

Lx is not always real. The effect of complex valued Lx can be interpreted as reducing the

tolerance of the algorithms to phase errors in the cancellation path estimate, in a worst-case

scenario, although in practice it can improve or degrade the stability in a rather aleatory way.

When the reference signal is outside the noise reduction band, Fz = 0, the system is always

stable since Rd̂d̂|Ŝz|
2 is always real and positive. Actually for this signal there is no feedback

from the physical system. When the reference signal is inside the noise reduction band, then

for the system to be stable Rdd̂SzŜ
∗

z must have a positive real component, otherwise the poles

will step out of the unit circle. For a narrowband reference system, the values of xz[n] can be

taken to be approximately constant, so Rdd̂ is approximately equal to Rdd and positive real.

This implies that the condition for stability is simply that the phase error ∆θS = θS −θŜ must

be smaller than 90o, |∆θS | < 90o. This is the same result as the one obtained for the FXLMS

algorithm and is in agreement with what would be intuitively expected.

Now it remains to determine the maximum values for the step size, which assures the

stability of the algorithm. That is, the value of the step-size that results in the first crossing of

the unit circle by a pole. Once again assuming the step size is a real number, a point Z is a

pole of the system if µx = Γ(Z), as given by (12), is a real number. If the pole is in the unit

circle, then, Z = eθZ i. The paper now proceeds to determine the values of θZ for the poles,

and then calculate µx = |Γ(eθZ i)| to obtain the limiting values of the step-size. To obtain

analytical expressions, some simplifications are required, which result in sufficient conditions

for stability, but which are not always necessary. It is possible to write,

µx ≤ µxMAX = Γ(eθZ i) = −
2 j sin(θZ/2) eθZ/2 i

Rd̂d̂ |Ŝz|2(1 − FzδS e−(d̂+DF ) θZj)
(15)

with,

δS = 1 −
Rd̂d

Rd̂d̂

Sz

Ŝz

z−∆d and ∆d = d − d̂. (16)

Once again for Fz = 0 the system is always stable. For Fz = 1, a lower bound for the absolute

value of µxMAX is,

|µxMAX| ≥
2 sin(θZ/2)

Rd̂d̂ |Ŝz|2(1 + |δS |)
. (17)

To determine the values of θZ of the poles, one must make the imaginary part of µxMAX equal

to zero, as in (18). The smallest values for θZ is the one which results in a lower limit for the

step-size:

Im{µxMAX} = 0 ⇔ Re{(1 − δS e−(d̂+DF ) θZj) e−θZ/2 j} = 0 (18)

which is equivalent to,

cos

(

θZ

2

)

= |δS | cos(φ), φ =

(

d̂ + DF +
1

2

)

θZ

2
. (19)
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If |δS | > 1 and if d and d̂ are large, then this equation has solutions for small values of θZ ,

which limits the step size to very small values, making the algorithm unstable in practice.

Otherwise the equation only has solutions for θZ > θZ
′, with,

cos(θZ
′/2) = |δS | ⇔ θZ

′ = 2 cos−1(|δS |). (20)

Once again, for large d, small changes in θZ , result in large changes in φ, namely cos(φ) goes

from −1 to 1 in only 2π/(d̂+DF +1/2), so the first zero crossing can be taken as θZ ≈ θZ
′.

Replacing (20) in (17), results in,

µx ≤
2

Rd̂d̂ |Ŝz|2

√

1 − |δS |

1 + |δS |
≤ µxMAX. (21)

This equation results in a lower limit for the step size which guarantees stability. The equation

only has solutions for |δS | < 1. To determine the greatest cancellation path delay estimation

error that permits the algorithm to be stable, one must determine ∆d so that |δS | = 1. This

results, for no phase errors, in the equation

∣

∣

∣
1 − cos(2πf/fA∆d)e2πf/fA∆d j

∣

∣

∣

2
= 1 ⇔ sin(2πf/fa∆d) = 1 ⇔ ∆d = fa/f/4 (22)

SIMULATION RESULTS

The algorithm proposed in Figs. 2 was validated through numerical simulations. It proved to

work as expected even in the presence of secondary path modeling errors [9].

Sinusoidal Reference White Noise Reference

fc f dM dM (T)

1000 Hz 900 0.5 1.11

500 Hz 450 1.4 2.22

500 Hz 800 ∞ ∞

250 Hz 200 3.2 5.00

fc dM dM (T)

1000 Hz 1.1 1.0

500 Hz 1.9 2.0

250 Hz 4.1 4.0

Table 1: Comparison of theoretical and simulation results for the sensitivity to secondary path

modeling errors.

Simulations for the sensitivity to secondary path modeling errors were made. The sec-

ondary path and primary path were modeled as pure delays corresponding to fractional values

of the DSP sampling time. In order to simulate these delays the analogue section was simu-

lated in discrete time, but at a higher sampling rate. The sampling frequency was fA = 4 kHz.

The maximum error for the delay of the cancellation path estimate, dM was measured for dif-

ferent anti-noise band limiting frequencies, fc and reference frequencies, f , for the case of
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sinusoidal input and compared to the theoretical predicted value, dM (T), derived from (22).

Table 1 shows the results for a 1×3×2 system with a sinusoidal reference, and for a 2×3×2

system with a white noise reference. The results are in close agreement with the theory.

CONCLUSION

In broadband active noise control systems, limiting the anti-noise frequency prevents quiet

zone degeneration, without the use of several error signals per anti-noise source. In this paper,

techniques to do this for multichannel systems are presented. This techniques increase the

stability to secondary path modeling errors, allow the use of low-order and delay anti-aliasing

and reconstruction filters, and finally, allow systems with more anti-noise sources than error

sensors for better cancellation path inversion while still achieving large quiet zones.
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