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Abstract 
The motions of a hula hoop are commonly regarded as the circular oscillations where a ring 
undergoes around a moving human body. Based on fundamental dynamic concepts, the hula 
loop motions are made possible by the interactive forces between the moving ring and human 
body. Inspired by the generic concept of the hula hoop motion, this study proposes a novel 
design of a motion transformer that consists of mainly a main mass sprung in one translational 
direction and a free-moving mass attached at one end of a rod, the other end of which is hinged 
onto the main mass. It is expected that the transformer is capable of transforming linear 
reciprocating motions to rotary ones based on the concepts similar to the hula hoop motions. In 
this way, the proposed transformer could be integrated with coils, magnets, and electric circuits 
to form a portable power generator. To ensure the aforementioned performance of the proposed 
transformer, a thorough dynamic analysis on the proposed transformer dynamic system is 
conducted in this study to understand relation between the varied system parameters and the 
chance of occurrence of a hula-loop motion. The governing equations are first formulated 
based on dynamic principles, which is followed by the search for steady-state solutions and 
corresponding stability analysis via the methods of harmonic balance and Floquet theory, 
respectively. Based on the obtained results, the design guidelines for determining transformer 
parameters to ensure the occurrence of hula-loop motions are distilled.  

1 INTRODUCTION 

The motions of a hula hoop are commonly regarded as the circular oscillations where a 
ring undergoes around a moving human body. Based on fundamental dynamic 
concepts, the occurrence of the hula loop motions are due to the interactive forces 
between the moving ring and human body. Inspired by the generic concept of the hula 
hoop motion, this study proposes a novel design of a motion transformer that consists 
of mainly a main mass sprung in one translational direction and a free-moving mass 
attached at one end of a rod, the other end of which is hinged onto the main mass. It is 
expected that the transformer is capable of transforming linear reciprocating motions to 
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rotary ones based on the concepts similar to the hula hoop motions. The proposed 
transformer could be integrated with coils, magnets, and electric circuits to form a 
portable power generator. To ensure the aforementioned performance of the proposed 
transformer, a thorough dynamic analysis on the proposed transformer dynamic system 
is conducted in this study to understand relation between the varied system parameters 
and the chance of occurrence of a hula-loop motion. Note that Hatwal et al. [1] 
presented a dynamic analysis on the system virtually owning the dynamic structure, but 
concentrating on the small-amplitude oscillating motions of the free mass. In this study, 
the free mass is expected to exhibit rotational motions as the hula-lop motions. The 
governing equations are first formulated based on dynamic principles, which is 
followed by the search for steady-state solutions and corresponding stability analysis 
via the methods of harmonic balance and Floquet theory, respectively. Based on the 
obtained results, the design guidelines for determining transformer parameters to 
ensure the occurrence of hula-loop motions are distilled. 

2 DYNAMICAL EQUATION 

Mimicking the hula hoop spun around a human body, the hula-hoop system can be 
schematically iluustrated as Fig. 1, in which a main mass, M, works as the main body 
on which a free (free) mass is rotating around an axis fixed to the main mass as the hula 
hoop. According to the dynamics of the hula-hoop motion, the free mass is required to 
spin around the pin located at the center of the main mass to which the external forces, 
Fex and Fey, applied. In a broad definition, the hula-hoop motion occurs as the free mass 
spins around the pin in the same direction, that is, the angular displacement of the free 
mass either grows or declines continuously, depending on the dynamic characteristics 
of the applied external force. In various applications, the hula-hoop system can be 
constructed in three different configurations shown in Fig. 2. Fig. 2 (a) is similar to Fig. 
1, the main mass transmits the external forces from the pin to the inner surface of the 
free mass. Resembling the impact damper, Fig. 2(b) illustrates that the main mass 
drives the free mass via their contact surfaces. The phenomena of loss of contact and 
impact between the two masses may occur in these two configurations due to the 
insufficiency of the normal force. As a result, the hula-hoop motion will not happen.    
Fig. 2(c) is another alternative configuration of Fig. 1, which still possesses the 
dynamic characteristics of hula-hoop motion. The free mass and the pin on the main 
mass is connected by a rigid link to keep the two masses in a constant distance and to 
confine the free mass spinning along a circular path. Therefore, the above mentioned 
phenomena, loss of contact and impact, would not happen. Furthermore, since the 
objective of this paper is to design a motion transformer that is capable of transforming 
linear reciprocating motions to rotaries, we will adopt the configuration in Fig. 2(c) in 
the following analysis. 
    To the end of a precise dynamic modelling, the system shown in Fig. 2(c) is further 
modified by attaching the main mass with a spring and a damper, as shown in Fig. 3, to 
create the possibility of the reciprocating motions of the main mass In the figure, M, m, 
k, c, cm, R and Fey indicate the main mass, free mass, coefficient of the spring, damping 
capacity of the damper, the rotational damping due to the friction between the pin and 
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hole, distance between the centers of the pin and the free mass, and the external force in 
y-direction, respectively. The motion degrees of freedom (DOFs) of the main mass and 
the free mass are represented by y and θ, respectively, which implies that the main mass 
reciprocating along one single translational DOF of y while the free mass rotates 
around the pin. In addition, the following assumptions are made to simplify the ensuing 
analysis without loss of generality but still complying with the purpose of the study. 
 

1. The main mass is confined to move only in y direction. 
2. The free mass is a point mass.  
3. The link connecting the free mass and pin is rigid. 
4. The two masses move parallel to ground, no gravity is considered. No bearing 

clearance exists at the rotary joint. 
 

Lagrange’s equation is next employed to derive the governing equations that 
describe the motions of the two masses under external excitation. The formation of 
kinetic energy is started with system motions in terms of the notations defined, yielding 
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where Vx and Vy denote the absolute velocities of the free mass in the x- and 
y-directions, respectively. On the other hand, the potential energy in the system caused 
by the motion of the spring can be expressed as 2=(1/ 2)V ky . The generalized forces of 
the system can be categorized into two kinds, acting on the main mass and acting on the 
free mass. Those on the main mass are the damping force exerted by the damper and 
external force, which can be simply captured by + eycy F− . For the non-conservative 
force acting on the free mass that spins around the center pin is the rotational friction 
force, mRc θ− . With potentials, kinetic energies and generalized forces, the equations of 
motion of the system can be derived by applying Lagrange’s equation 

   ( ) ( )
kq
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where L T V= − , T is the total kinetic energy, V is the total potentials, 
kqQ ’s are 

generalized forces, and qk’s are the generalized coordinates. Having applied the 
Lagrange’s equation as shown in Eq. (2), the equations governing the motions of the 
free mass and the main mass can be derived and then expressed as 

0cos =++ θθθ y
m
c

R m                                  (3) 
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( ) ( )2 sin coseyM m y cy ky F mR θ θ θ θ+ + + = + −                (4) 

To analyze the dynamic behaviours of the system, it is convenient to express Eqs. (3) 
and (4) in non-dimensional forms via the non-dimensional parameters defined by 
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yielding 
( ){ }2( ) 2 ( ) ( ) ( ) cos ( ) ( ) sin ( ) ( )eqq q q Fτ ρ τ τ ε θ τ θ τ θ τ θ τ τ′′ ′ ′′ ′+ + + − =           (6) 

( ) ( ) cos ( ) 0m qθ τ ς θ τ θ τ′′ ′ ′′+ + =                                                                     (7) 
where the primes denotes the derivative with respect to the non-dimensional time τ. 
With the equations (6,7) in hands, approximate steady-state solutions are sought in 
section 3 and the associated stability analyses are conducted in section 4.  

 3 APPROXIMATE STEADY STATE SOLUTIONS 

It is seen from Eqs. (6) and (7) that the hula-loop system considered in this study, as 
presented in Fig. 3, exhibits the dynamics that can be described by a set of two 
second-order non-linear differential equations. With system dynamic equations in hand, 
the next step is to seek the approximate particularly the steady state solutions that 
corresponds to the scenario of a reciprocating main mass and a rotational free mass. 
Since this solution is the desired one that provides the capability of transforming the 
translational, reciprocating motions to rotating ones, then enabling the designed system 
to fulfil the design purpose of power generation. With the assumed harmonic excitation 

( )eqF τ , shown in the last equation of Eqs. (5), it is reasonable to assume that the desired 
solution the steady-state solution of the main mass to be harmonic in the same 
frequency of excitation Ω plus a higher order components in the scales of ε , i.e.,  

 ( )1 cos ( )q q Oτ β ε= Ω − + ,                                         (8a) 

where 1q  denotes the amplitude of oscillation of the main mass. On the other hand, in 
order to reflect the dynamic characteristics of the hula-hoop motion, the steady-state 
response of the angular displacement of the rotating mass, θ, must grow or decline 
linearly and the variation of angular velocity θ′ is small. Thus, the motion of the mass is 
assumed as a sum of a constant-velocity rotation, a super harmonic components and 
higher-order terms, i.e.,   

( )1 cos 2uθ ατ τ γ= + Ω − ,                                   (8b) 
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where α=Ω and 1 1u < . In addition, β and γ are the phase angles. Note that the 
assumption of the super harmonic components in double oscillating frequency 2Ω in 
Eq. (8b) originates from the fact that in the most of numerically simulated system 
responses, the motions of the rotating free mass exhibit strong a double-frequency 
super harmonic component from frequency content. Towards the end of approximating 
steady-state solutions, the assumed solution forms in Eqs. (8) are plugged back into 
system equations (6,7), and then employing the method of harmonic balancing to find 
appropriate values of { 1 1, , ,q u β γ }. In the aforementioned process of finding 
approximate solutions of 1q  and ε  in Eqs. (8a,8b), the Neumann’s expansion [3] is 
utilized to expand the terms wherever it is necessary. The Neumann’s expansion 
enables 

( ) ( ) ( ) ( )1 1 1 3 1 5 1sin cos 2 cos 2 cos3 2 cos5 ...u J u J u J uψ ψ ψ ψ= − + − +    (9) 

( ) ( ) ( ) ( )1 0 1 2 1 4 1cos cos 2 cos 2 2 cos 4 ...u J u J u J uψ ψ ψ= − + − +             (10) 

where =2ψ τ γΩ − ; Jn, n = 0, 1, …., 5, is known as Bessel function of the first kind of 

order n .Employing Eq. (9)-(11), the terms in the bracket on the left-hand side of Eq. (6) 

and the last term on the left-hand side of Eq. (7) can be expanded as 

( ) ( )( ) ( )( )21
2 cossinsin HH ττθθ Ω+Ω=′                         (12) 

( )( ) ( )( )21 cossincos LL ττθθ Ω+Ω=′′                              (13) 
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where the expressions of the newly-introduced parameters are  omitted for simplicity 
of presentation. As mentioned above that 1 1u <  and only the first-order approximation 
is assumed, the Bessel function can be well approximated by  
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1
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u
uJ n

n

n ≅ .                                                     (15) 

Substituting Eq. (8) and (12)-(15) into (6) and (7) and equating the coefficients of sine 
and cosine terms, the following four equations that will be solved for the four 
unknowns q1, u1, β, and γ are obtained. 
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Solving the pure algebraic equations (16-19) provides the solutions of { 1 1, , ,q u β γ } 
that lead to a reciprocating main mass and a rotational free mass, following the motions 
prescribed by Eqs. (8a,b), respectively.  

 4 STABILITY ANLAYSIS 

Based on basic theory of nonlinear dynamics, the steady-state solutions with the 
reciprocating main mass and the rotational free mass sought by Eqs. (16-19) need to be 
stable to be present in practice. Therefore, the stabilities of the steady-state solutions 
found by the solution procedure provided by the previous section is explored in order to 
determine if the solved steady-state solutions are present in practice. The process of 
stability analysis is initiated by adding small perturbations q~ andθ~  to the principal 
lower-order parts of q  and θ  in Eqs. (8a,b), yielding 

( )
( ) θγτατθ

βτ
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                                    (20) 

Substituting the perturbed q  and θ  in Eq. (20) into the equations of motion (6) and (7) 
yields the equations with the linear parts in terms of the perturbations q~  and θ~  as 

0~~~~~2~
321 =+′+′′++′+′′ θθθρ PPPqqq                         (21) 

0~~~~
54 =′′++′+′′ qPPm θθςθ                                  (22) 

where the expressions of bθ  and P’s are omitted for the sake of presentation simplicity. 
Eqs. (21) and (22) are in fact linear equations with periodic coefficients. The 
well-known Floquet’s theory [2,3] is, therefore, next employed to investigate the 
stabilities of the solved steady-state solutions complying with the forms in Eqs. (8a,b). 
By letting q Q′ =  and Oθ ′ = , the two second-order differential equations (21) and (22) 
are transformed into four first-order equations as  

( )A τ′ =x x                                                (23) 

With the expression of ( )A τ  in hands, the so-called transition matrix exp( ( )A T ) over 
one period of oscillation T can be computed. The stability of each solved steady-state 
solution is then determined based on whether the eigenvalues of the transition matrix 
are located inside the unit circle in the complex plane. If all eigenvalues of the 
transition matrix are inside the unit circle, the solved solution is stable and possibly 
appears in practice. On contrary, if any eigenvalue of the transition matrix is outside the 
unit circle, then the corresponding solved solution is unstable and cannot be observed 
at steady state in practice. Figure 4 shows the stability analysis results following the 
aforementioned computation procedure on the transition matrix and associated 
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eigenvalues. In this figure, the coarse curves denote the boundaries between stable and 
unstable solutions in the form of Eqs. (8a,b), which results from computation of the 
eigenvalues of the transition matrix. Between boundaries, there are three regions. 
Region I and III enclose unstable solutions, while Region II does stable ones. On the 
other hand, also shown in the figure are circles and crosses, which represent stable and 
unstable solutions, respectively. Note that the stabilities associated with circles and 
crosses are obtained from direct numerical solutions on the original governing 
equations (3) and (4). It can be seen that a general agreement is present between the 
stabilities prediction by the analytical Floquet theory and the direct numerical 
simulations despite few exceptions.  

5 CONCLUTIONS 
A thorough dynamical modeling is conducted for a motion transformer mimicking a 
hula loop, and further exploring feasibility of the desired steady-state solutions. Also 
preformed is the stability analysis on the desired solution via the Floquet theory in 
order to guarantee the practical existence of the solution. It is found that the desired 
steady-state solution that transforms the reciprocating motions of the main mass to 
rotary ones of the free mass does exist. The corresponding approximate mathematical 
expressions are also derived. Furthermore, via the analysis based on the Floquet theory 
the stability of the desired solution can be endured over a large set of combinations of 
driving frequencies and amplitudes. A general agreement is present between the 
stabilities prediction by the Floquet theory and the direct numerical simulations. 
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Figure 1 – Schematic of a hula-hoop system 
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Figure 2 – Three configurations of the hula-hoop system 

 
Figure 3 – Dynamic model of the entire hula-hoop system 

 

 

Figure 4 – Stabilities of solved steady-state solutions 
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