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Abstract 
In this paper, an analytical approach for nonlinear forced vibration of a 
multi-degree-of-freedom system is proposed using the component mode synthesis method. The 
whole system is divided into some components and a nonlinear modal equation of each 
component is derived using the unconstrained vibration modes. The modal equations of all 
components and the conjunction conditions are solved simultaneously, and then the modal 
responses of components are derived. Finally, the dynamic responses of the whole system can 
be obtained. The degrees of freedom of modal equations can be reduced when the lower 
vibration modes are only adopted in each component. As a numerical example, a simple 
five-degree-of-freedom system is considered, in which all spring have cubic type nonlinearity. 
As a result, it is shown that even if the lower vibration modes of each component are only 
adopted, the accurate dynamic response near the first resonance can be obtained.  

INTRODUCTION 

Recently, the nonlinear vibration analysis becomes more important from the viewpoint 
of machine condition monitoring and diagnosis. Usually, the equation of motion with 
nonlinear properties is constructed, for example, using F.E.M., then the equation is 
transformed into modal equation with a few modal responses by the modal analysis 
technique. Then the nonlinear vibration is calculated by the direct integration, the 
method of multiple scales, harmonic balance method [1] and so on. However, when the 
system has huge degrees of freedom, the eigenvalue analysis needs large computer 
storage and calculation time. Because of the reason, the component mode synthesis 
(C.M.S.) method has been developed [2] for applying to the linear system only. In the 
previously paper, an analytical method using C.M.S. method was proposed for a 
nonlinear system [3]. But it is applicable only for the specific problem because there 
are many assumptions in the formulation.  
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In this paper, a new analytical approach for nonlinear forced vibration of a 
multi-degree-of-freedom system is proposed using the C.M.S. method. The whole 
system is divided into some components and a nonlinear modal equation of each 
component is derived using the unconstrained vibration modes. The modal equations 
of all components and the conjunction conditions are solved simultaneously, and then 
the modal responses of components are derived. Finally, the dynamic responses of the 
whole system are obtained. The degrees of freedom of modal equations can be reduced 
when the lower vibration modes are only adopted in each component. As a numerical 
example, a simple five-degree-of-freedom system is considered, in which all spring 
have cubic type nonlinearity. The system is divided into two components with three 
degrees of freedom and the applicability of the proposed method is inspected.  

FORMULATION BY C.M.S. METHOD 

 
In this paper, the nonlinear forced vibration is analyzed when the amplitude of 
vibration is so large that the nonlinear property of the element cannot be ignored. And it 
is assumed that the nonlinearity can be expressed as the polynomials of displacement, 
there are no rigid modes when the whole system is divided and no external force acts in 
the conjunction region. For simplicity of the explanation, the damping property is 
ignored and the whole system is divided into two components as shown in Fig.1.  
 
 

fixed end fixed end 

(a) whole system 

{ })1(
ax  { })2(

ax

conjunction region { }

internal region internal region 

{ })1(
bx )2(

bxconjunction region 

(b) two components 

Figure 1 – Analytical model 
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Equation of motion of component 

The equation of motion for the component 1 can be obtained by F.E.M. as follows: 
 
 [ ]{ } [ ]{ } ( ){ } { })1()1()1()1()1()1()1( fxNxKxM =++&& , (1) 
 
where { }  is the displacement vector and the subscript ‘ ’ and ‘ b ’ 

denote the internal and conjunction region, respectively. The term 

{ T
ba xxx )1()1()1( = } a

( ){ })1()1( xN  means 
the nonlinear property composed of the polynomials of displacement. The term { })1(f  
is composed of the external force { })1(

af  and the internal force { })1(
rf .  

The eigenvalue analysis for the linear system of Eq.(1) is carried out, and the 
natural frequencies squared and the natural vibration modes can be obtained as [ ]2)1(ω  
and [ ])1(Φ , respectively. Using the transformation of { } [ ]{ })1()1()1( ηΦ=x , Eq.(1) can be 
rewritten as follows: 
 
 [ ]{ } [ ]{ } [ ] ( ){ } [ ] { })1()1()1()1()1()1(2)1()1()1( fNI

TT
Φ=Φ++ ηηωη&& . (2) 

 
Using the similar procedure, the equation of motion for the component 2 can be 

obtained in the modal coordinate system as follows: 
 
 [ ]{ } [ ]{ } [ ] ( ){ } [ ] { })2()2()2()2()2()2(2)2()2()2( fNI

TT
Φ=Φ++ ηηωη&& , (3) 

 
where { })2(η  is the modal displacement of the component 2.  

Conjunction condition of two components 

The physical displacement of the conjunction region has to be same such as 
{ } { })2()1(

bb xx = . This condition can be expressed as follows: 
 
 [ ]{ } [ ]{ })2()2()1()1( ηη bb Φ=Φ . (4) 
 

The internal force acting on the component 1 must be the opposite direction of 
the one acting on the component 2, but the amplitude must be same as follows: 
 
 { } { } { }rrr fff −=−= )2()1( . (5) 

Synthesizing of two components 

Introducing Eq.(5) into Eqs.(2) and (3), premultiplying the first result by [ ])1(
bΦ  and the 
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second one by [ ])2(
bΦ , and subtracting and using Eq.(4), the internal force {  can be 

obtained as follows:  
}rf

 
 { } [ ]{ } [ ]{ } [ ]{ } [ ]{ } [ ] [ ]21
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Introducing Eq.(6) into Eqs.(2) and (3) again, the next type of equation can be obtained.  
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The coefficient matrices and nonlinear terms can be concretely expressed when the 
subject is given.  

The degree of freedom is checked here. When the degrees of freedom of the 
internal region of the component 1 and 2 are  and , and the one of the conjunction 
region is , the total degree of freedom is 

1n 2n

cn cnnn ++ 21 . In the method proposed in this 
paper, when all vibration modes are adopted in each component, the total degree of 
freedom is cnnn 221 ++ , which is more than the original degree of freedom. But when a 
few vibration modes are only adopted, the total degree of freedom can be reduced. This 
point is an advantage of this method.  

Equation (8) is a typical nonlinear differential equation. The forced vibration can 
be obtained by the direct integration, the method of multiple scales, harmonic balance 
method and so on. 

NUMARICAL EXAMPLES 

Numerical model and equation of motion of component 

To check the applicability of the method, a simple five-degree-of-freedom system is 
considered as shown in Fig.2(a), and it is divided into two components as shown in 
Fig.2(b). In this example, no external force acts on mass , the whole system is 
divided there. All springs have cubic type nonlinearity, 

3m

( )3xxkfs β+= , where  and sf
x  are the restoring force and relative displacement, respectively.  

For the component 1, the coefficient matrices in Eq.(1) and the nonlinearity 
vector is obtained as follow:  
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where ,  and  are ,  and  in Fig.2(a), respectively. For the 
component 2, they can be similarly obtained. The specifications are as follows:  
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Natural frequencies for the linear system 

Primarily, for the linear system, the natural frequencies are calculated. The exact result 
is obtained from the full order model, which is a five-degree-of-freedom system. There 
are three vibration modes in each component, 321 == nn , so when all of them are 
adopted, the total degrees of freedom become six. This case is indicated as ‘cms33’ in 
this study. Similarly, when the lower two or one modes are adopted, the total degrees of 
freedom become four or two, respectively, and these cases are indicated as ‘cms22’ or 
‘cms11’.  

55, fx  44 , fx3x22 , fx11, fx
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(a) whole system 

(b1) component 1 

(b2) component 2 

Figure 2 – A five-degree-of-freedom system
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The results are shown in Table 1. From the table, it is recognized that the lower 
natural frequencies are determined, the degrees of freedom of components can be 
reduced, that is to say, the total degrees of freedom can be reduced. In the case of 
‘cms22’, the result of 2ω  is not correct because the degrees of freedom of components 
are so few that the second vibration mode, that has a node at the center, cannot be 
correctly expressed.  

 
Table 1 – Comparison of natural frequencies 

Natural 
frequency [Hz] exact cms33 cms22 cms11 

1ω  26.05 26.05 26.05 26.05 

2ω  50.33 50.33 53.59 ―― 

3ω  71.18 71.18 71.18 ―― 

4ω  87.17 87.17 ―― ―― 

5ω  97.23 97.23 ―― ―― 

Nonlinear forced response by harmonic balance method 

It is assumed that the periodic external force with the frequency ω  acts on the second 
mass; tFf ωcos22 =  and . The steady state responses are calculated by 
using the harmonic balance method. In the case of ‘exact’, the result is calculated 
directly from the full order model. The other hand, in the case of the proposed method, 
it is calculated from Eq.(8).  

NF 3
2 101×=

The resonance curves at  near the first natural frequency are shown in Fig.3. 
The results of ‘cms33’ and ‘cms22’ agree very well with the result of ‘exact’ one. In the 
case of ‘cms11’, there is slight difference. It is recognized that an accurate result can be 
obtained for the first resonance in the case of few degrees of freedom.  

3x

Next, the steady state response are calculated when the vibration modes are 
truncated in the nonlinear modal equation for the full order model. When all vibration 
modes are adopted, that is indicated as ‘direct5’, the result is equal to the one of ‘exact’. 
When the lower four or three vibration modes are adopted, the cases are indicated as 
‘direct4’ or ‘direct3’, respectively. The results of ‘exact’, ‘cms22’, ‘direct4’ and 
‘direct3’ are shown in Fig.4. The result of ‘cms22’ agrees well with ‘exact’ than 
‘direct4’ and ‘direct3’.  

Finally, the calculation load is checked. The size of eigenvalue analysis, the 
number of variables and the number of nonlinear terms have much influence on the 
calculation load. That is shown in Table 2. In the case of ‘direct4’, for example, the 
eigenvalue analysis has to be done for the full order model once, that is shown ‘1 for 
(5x5) matrix’. The variables are )4,,1( L=iiη  and the nonlinear terms are the 
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polynomials of the third power of variables like . In the case of ‘cms22’, the 
eigenvalue analysis has to be done for each component with three degrees of freedom, 
that is shown ‘2 for (3x3) matrix’. The variables are  and the 
nonlinear terms are the polynomials of the third power of variables like 

. In the case of ‘cms22’, though the eigenvalue analysis is done for a 
lower order matrix and the number of nonlinear terms is few, the acceptable result can 
be obtained. It is recognized that the method proposed in this study is effective for the 
actual application.  
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Figure 3 – Comparison of resonance curve among exact and C.M.S. method 
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Table 2 – Comparison of calculation load 

 Eigenvalue analysis Variables Nonlinear 
terms 

direct5 1 for (5 x 5) matrix 5 26 

direct4 1 for (5 x 5) matrix 4 17 

direct3 1 for (5 x 5) matrix 3 10 

cms33 2 for (3 x 3) matrix 6 20 

cms22 2 for (3 x 3) matrix 4 8 

cms11 2 for (3 x 3) matrix 2 2 

CONCLUSIONS 

In this paper, an analytical approach for nonlinear forced vibration of a 
multi-degree-of-freedom system is proposed using the component mode synthesis 
method. By using the method, the degrees of freedom of modal equations can be 
reduced when the lower vibration modes are only adopted in each component. As a 
numerical example, a simple five-degree-of-freedom system is considered. As a result, 
it is shown that even if the lower vibration modes of components are only adopted, the 
accurate dynamic response near the first resonance can be obtained.  
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