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Abstract
The noise generated by slats can contribute significantly to the airframe noise of an aircraft.
The tonal noise in the high frequencies (4-5 kHz) of the acoustic spectrum is related to the
vortex shedding in the near wake of the slat truncated trailing edge. A quantitative value of
the frequency of this phenomenon is computed with linear stability tools. The influence of the
main part of the wing on the eigenmodes is also examined.

INTRODUCTION

Aerodynamical and slat noise

Noise from high-lift devices, such as flaps and slats, can contribute significantly to the overall
aircraft noise, particularly during the approach before landing. Consequently, many noise
reduction programs have been conducted in Europe and USA during the last ten years. The
review of Khorrami et. al. [1] shows that the acoustic spectrum of the sound radiated by
the slats of a large aircraft exhibits two features for an angle of incidence of 30 degrees : a
broadband component in the low to mid-frequency band (0-500 Hz), and a tonal one in the
high frequencies (around 4-5 kHz). RANS/LES computations from ONERA (S. Ben Khelil et
al. [2]), URANS computations from the NASA (M.R. Khorrami et al. [3]) and experiments
from DLR (W. Dobrzynski et al. [4]) show that the flow around the slat exhibits a large scale
unsteady vortex in the slat cove and a vortex shedding in the wake downstream of the slat
trailing edge. It has been found that the broadband noise is related to the slat cove vortex and
tonal noise to the vortex shedding (see figure 1, these computations and experiments are made
on a 1/10th scale slat), which will be the subject of this study.
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Figure 1: Relation between slat flow and his spectrum

The flow in the wake of the slat truncated trailing edge is roughly parallel and as a con-
sequence of the continuity equation slowly varying in the streamwise direction. Just behind
the edge, the flow separates in a recirculation bubble with a small counterflow which induces
a zone of absolute instability. The linear stability theory seems to be one of the best ways to
study this wake.

Linear stability tools

While LES computations are able to give a global resolution, a stability analysis can give, at
small computing costs, an original insight concerning the mechanisms underlying the physics
of the flow, and a validation of LES post-treatments. The linear stability theory of Bers [5] or
Huerre and Rossi [6] for parallel flows enables to predict the vortex shedding frequency and
to perform a modal study.

PROBLEM FORMULATION

Stability problem

We consider Cartesian coordinates (x, y) where x is the streamwise direction and y the cross-
tream one (see figure 3). The flow is assumed uniform in the spanwise direction z. In the
classical stability approach, the flow variables are split into a mean part and a small perturba-
tion (with ε � 1) :















u(x, y, t) = U0(x, y) + εu1(x, y, t)

v(x, y, t) = εv1(x, y, t)

p(x, y, t) = P0 + εp1(x, y, t)

ρ(x, y, t) = ρ0(x, y) + ερ1(x, y, t)

(1)
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The mean flow is supposed to be isentropic on each streamline. Then, introducing the set
of equations (1) into the Euler equations and keeping the first order terms in ε leads to the
Linearized Euler Equations (LEE). The mean flow’s x-derivatives are simplified using the
slowly varying flow assumption (WKB method) and the density is eliminated thanks to the
hypothesis of barotropic pressure. Then we adopt the classical approach of stability writing
the perturbations functions as normal modes with complex pulsation ω, wave number α and
complex eigenfunctions depending on y only.















u1(x, y, t) = F (y)ei(αx−ωt)

v1(x, y, t) = G(y)ei(αx−ωt)

p1(x, y, t) = P (y)ei(αx−ωt)

(2)

Then, the LEE equations read :















iρ0c
2
0α F + ρ0c

2
0 ∂yG + i(αU0 − ω)P = 0

i(αU0 − ω)F + ∂yU0 G + iαρ−1
0 P = 0

i(αU0 − ω)G + ρ−1
0 ∂yP = 0

(3)

where c0 is the speed of sound in the mean flow.

Boundary conditions

On a wall, a slip condition will be imposed : G = 0. If no wall is present, we will match the
solution with the analytic solution of the problem (3) for a uniform flow. In the following, this
condition will be called the “Uniform Flow Solution Matching” (UFMS) condition.

Numerical resolution

The system (3) associated with the previous boundary conditions constitutes a generalized
eigenvalue problem which is solved with a spectral collocation method based on the Cheby-
shev polynomials (M.R. Khorrami [7]). In the frame of a temporal study, α is fixed to a real
value and the searched complex eigenvalue is ω. Then the generalized eigenvalue problem
reads :

Aα(U0, ρ0, c0, α)X = ωBαX (4)

In the case of a spatial study, ω is fixed to a real value, and the generalized eigenvalue problem
reads :

Aω(U0, ρ0, c0, ω)X = αBωX (5)

These problems are solved with standard LAPACK routines, for the resolution of generalized
eigenvalue problems.
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MEAN FLOW DEFINITION

In order to proceed to the stability analysis, a base flow is needed to give appropriate values
to the coefficients U0, ρ0 and c0 in the system (3).

Geometry and mean flow

The mean flow is extracted from a RANS calculation performed by S. Ben Khelil [2] around
a 2D full wing with high lift devices, at 1/10th scale. The figure 2 shows a general view of the
flow around the slat. In this case, the recirculation bubble behind the slat trailing edge is quite
small (figure 3), approximatively as wide as the slat trailing edge width d.

Figure 2: General view of the slat flow Figure 3: Focus on the trailing edge flow

Profiles extraction and interpolation
Extraction

The streamwise velocity ul (figure 5) is made dimensionless by the speed of sound c0, the
streamwise and cross-tream coordinates (resp. ξ and η) by d/2. Three profiles for both the
streamwise velocity and the density are extracted at different streamwise stations (cf. fig-
ure 4) : ξ1 (the closest to the slat), ξ2 and ξ3 (the furthest). The first two profiles (ξ1 and ξ2)
are in the recirculating zone, while the third one (ξ3) is not. Furthermore, they are bounded
by the main part of the wing for the lower boundary (η = −52), where a slip condition will
be imposed (G = 0), and by the uniform flow field for the upper boundary (η = 10), where
the UFSM condition will be applied.

Interpolation

There is no reason that the interpolation points and the collocation ones be the same, so an
interpolation is needed to evaluate the profiles at the collocation points. We use a spline-based
method that is easy to implement and economic in CPU time and memory. Furthermore,
this method offers the ability to compute the first and second order derivatives of the fitted
function.
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Figure 4: Profile positions Figure 5: Streamwise velocity

STABILITY COMPUTATIONS

Now, all the coefficients of the system (3) are known thanks to the extraction and the interpo-
lation of the RANS stationary mean field, so that the stability study can be performed.

Spatial study

For each profile, the generalized eigenvalue problem (5) is solved, with ω = 0.15. A set of
discrete values for α is obtained amongst which are artefacts of the collocation method. They
are easily catchable as they move with the number of Chebyshev polynomials used, while the
“physical modes” do not as soon as enough polynomials are used. There are four modes for
the first profile, and two for the other two, at the considered pulsation. The spatial spectra are
all symmetric with respect to the Im(α) = 0 axis, which is typical of inviscid flow. After
applying the Bers criterion [5] we find that only those with a negative imaginary part are
amplified and that they propagate downstream.

Eigenvectors

The eigenvectors associated with the most amplified modes are computed. A normalization
such that maxy(P (y)) = 1 is done. The real and imaginary parts and the three eigenvectors
F , G and P are shown in figures 6 and 7 for the amplified mode of the third profile, only for
η ∈ [−10, 10].

We can see that the cross-stream profiles are almost symmetric, while the pressure ones
are almost antisymmetric. The same trend is observed on the other profiles. This is character-
istic of a “sinuous” mode (Huerre & Rossi [6]), which according to the linear stability theory
of symmetric wakes is the most amplified one. So this result seems to be applicable for our
nearly symmetric wake.
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Figure 6: Streamwise velocity Figure 7: Cross-tream velocity

Absolute instabilities

An absolute instabilitie corresponds to a wave that spreads exponentially in the entire domain,
and is characterized by the value of the pulsation of a stationary wavepacket in the x/t =

0 ray : the absolute pulsation which is denoted as ω0. The real part of ω0 will give us an
approximate value of the vortex shedding freqency.

To find the value of ω0, we apply the “Absolute Instability Criterion” (AIC) also named
“Briggs criterion” [5]. According to it, the absolute instability is a saddle point of the dis-
persion relation in the plane (ω, α), associated with a cusp point in the (ωr, αr) and (ωr, αi)

planes, and a coalescence of the spatial branches in the (αr, αi) plane.
So, by iterative resolution of the problems (4) and (5) we plot the curves ωr →

αi(ωr, ωi), ωr → αr(ωr, ωi), and αr → αi(ωr, ωi), varying ωi from 0 to a value that gives
rise to a possible cusp point, with the coalescence of the spatial branches. If no cusp point
is visible, nor coalescence, or if the value of the correponding ωi is negative, no absolute
instability occurs. In all other cases, the vortex shedding frequency is given (locally) by the
dimensional absolute frequency :

f0 =
ω0,rc0

πd
.

As an illustration, we present in figure 8 and 9 the results for the first profile. In figures 8
we have a cusp point in (ωr, αi) = (0.1175,−0.705), for ωi = 0.023. The coalescence of the
spatial branches is visible in figure 9 for α = 1.082 − 0.705i and again ωi = 0.023. Here an
absolute instability is characterized according to the AIC, as ω0,i > 0. We apply the AIC for
the most amplified mode of the three profiles, and we find absolute instabilities only for the
first two profiles.

The table 1 summarizes the values found. These frequencies are local, that is they
do not necessarily correspond to the value of the global phenomenon, the vortex shedding.
As the recirculation bubble is very small and the found values quite similar, we will keep a
quantitative value around 40 kHz for the vortex shedding fequency. This value is in very good
agreement with the tonal noise in the slat spectrum (figure 1). Computations have been made
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Profile ξ1 ξ2

ω0 0,1175 + 0,023i 0,1212 + 0,013i
f0(Hz) 38974 40217

Table 1: Absolute frequencies

on a 1/10 scale, so keeping constant the Strouhal number

St =
f0d

Uref

,

this gives rise to a frequency at a full-scale

f?
0 =

StUref

d?
= 4kHz.

ωr

α i
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ωi =0.023000
ωi =0.023500
ωi =0.024000
ωi =0.026000
ωi =0.030000
ωi =0.040000

Figure 8: (ωr, αi) plane
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Figure 9: (αr, αi) plane

Boundary condition influence

Until now we have imposed a slip condition at the lower boundary of the domain (η = −52),
and a UFSM condition at the upper boundary (η = 10). Now a stability analysis is performed
on the truncated domain [−10, 10], and a UFSM condition is imposed at both extremities.

We execute the same computations as above, and we find the same results. The direct
conclusion is that is this case the main wing does not have any influence on the values of the
absolute instabilities. This is easy to understand when looking at the eigenvectors (figures 6
and 7). They are damped very early (for η < −5 and η > 5) in comparison with the distance
to the main part of the wing (η = −52).
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CONCLUSIONS

Thanks to linear stability tools, a quantitative value of the vortex shedding frequency has been
computed at very low computing cost. The value found, for the 1/10 scale, near 40 kHz is in
good agreement with existing measurements and computations that, for different experimental
or computational conditions, give results from 30 kHz to 50 kHz for the same scale.

Moreover, the present study has been able to confirm the existence of a pocket of abso-
lute instability, which seems to correspond roughly with the recirculation bubble. This pocket
acts as a hydrodynamic oscillator and creates the vortex shedding.

We have also shown that there is no influence of the main part of the wing on the vortex
shedding frequency.
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