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Abstract 
For lightly damped structures under periodic excitation, vibration responses are 
generally composed of forced vibration and the natural vibration. Lightly damped 
modes and periodic vibration render the synthesis of active controllers very difficult 
and high order controllers are usually generated with less feasibility in practical 
implementation. To obviate this difficulty, two active control strategies, active 
damping and harmonic cancellation, are considered to control vibration over a broad 
frequency band. In the experiment of active vibration suppression, harmonic 
cancellation and active damping are implemented simultaneously, where harmonic 
cancellation is based on an inverse modeling technique and no observer is needed. 
The inverse of the dynamic model of a test rig with two elastic plates is guaranteed by 
the collocated placement of transducer and actuator, which theoretically results in a 
minimum phase system. The inverse model was realized on a digital controller, and 
the experimental results show that vibration suppression can be achieved if the 
transport delay of control signal is sufficiently small. 
 
 

INTRODUCTION 
 
Passive vibration isolation systems are widely used in engineering since they are 
reliable and effective in most cases. However, performance compromise should be 
considered in passive vibration isolation systems due to the inherent conflict that 
suppression of mount resonance will deteriorate high frequency performance. In 
contrast, active isolation systems can achieve good performance simultaneously at 



 

resonance and higher frequencies, which is the essential feature that makes active 
systems attractive. Generally, an active system works in combination with a passive 
mount so that the advantages of both passive and active isolation systems are retained. 
In recent years, a great deal of progress has been achieved on the development and 
application of active isolation systems that can be found mainly in automotive 
suspension, disturbance isolation of experimental platforms, etc [1-2]. 
In the area of vibration control of marine vessels, vibration isolation of power 
machinery is of great importance. The reduced vibration transmission to hull 
structures will decrease noise radiation of structures, which generally improves the 
acoustic environment for crew and passengers and in particular the underwater 
acoustic signature of vessels. Recently, a great deal of investigation has been 
conducted regarding the active vibration isolation of power machinery and the 
involved vibration control of flexible structures [3-5]. Vibration isolation of power 
machinery is usually connected with flexible structures. Due to the strong dynamic 
coupling between machines and their flexible supporting structures, vibration of hull 
structures is composed of natural and forced vibration induced by power machinery. 
As a result, the active isolation and control of vibration needs to deal with harmonic 
and random vibration to which active vibration attenuation strategies may be different 
dramatically. 

Active control strategies have been investigated widely and deeply during the 
past two decades, ranging from local control strategies to global control strategies 
using feedback of displacement, velocity, acceleration, force or the combination of 
them [6-10]. Since velocity feedback is effective in attenuating not only the resonance 
of an isolation system but also resonances of flexible structures, it has been applied 
largely in active vehicle suspensions and active damping [11-12]. However, force 
feedback is theoretically more stable than velocity feedback even in the case of 
flexible support of isolated machinery, which might have been a basis for the 
development of some active isolation units that use force gauges and force feedback. 

 
Velocity feedback is very effective in suppressing random vibration, but it is not 

so effective in reducing harmonic vibration as usually expected. Harmonic vibration 
induced by rotating machinery often composes a major part of the total vibration of 
structures. To control harmonic vibration, cancellation techniques are frequently 
utilized, which are constructed on adaptive strategies, observer based gain scheduling, 
or inverse modeling with intelligent networks, etc [13-15]. Adaptation of controllers 
is attractive since controllers can track any changes of a disturbance and react to it. 
However, adaptive controllers may be tardy in response to transient disturbances and 
sometimes unsatisfactory in control. If an observer is used, the shortcomings of 
adaptive controllers will not exist, but the order of the observer may be very high 
when there are plenty of harmonic components in measured responses. Therefore, a 
device of fast computing capability cannot be excluded. Inverse modeling is to embed 
an inverse model of the plant to the closed loop so that the plant input can be 
recovered from its output. Inverse modeling can be realized online, which makes 
control strategies adaptive to plant uncertainties. For nonlinear systems, intelligent 
networks are powerful in inverse modeling, on which many researches have been 



 

carried out. However, this paper has dealt with the inverse modeling in a static way, 
using a fixed inverse model in the closed loop to avoid any time-consuming online 
updating. By identifying the system model which is a minimum phase model and 
exchanging its the poles and zeros, an inverse model is obtained. With this inverse 
model, harmonic disturbances injecting to the input are recovered and a cancellation 
signal is added to the input to counteract the effect of disturbances. In the experiment, 
a vibration isolation system is used to investigate the efficacy of velocity feedback as 
well as inverse modeling in active vibration control. The discussion includes three 
sections. In Section 2 the theoretical background of active damping and harmonic 
cancellation based on inverse model is given briefly. Section 3 gives the experimental 
results of active isolation, and conclusions are made in Section 4. 
 

ACTIVE DAMPING AND HARMONIC CANCELLATION 
 
Active damping 
Active damping is realized by inserting active units between two systems connected 
through passive mounts, and active forces are proportional to the velocities of those 
points under control, as shown in Fig. 1. The vibration equation of this system is 
governed by equation (1), where 222111 , xgfxgf && −=−= and 0, 21 ≥gg . According to 
this equation, velocity feedback may introduce off-diagonal elements into the 
damping matrix, which results in an unsymmetric damping matrix and consequently 
system instability for large feedback gain. The stability of flexible systems with 
velocity feedback is conditional. However, in the special case where the supporting 
base is rigid and of infinite mass ( 0,021 === Yyy ), the velocity feedback as given 
in equation (1) is absolutely stable. 
 
 

Fig.1 Two elastic bodies connected 
through passive mounts and active 

units 
Fig.2 Root loci of the active damping system 
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Generally, for the suspended structure (Ms, Cs, Ks) as shown in Fig. 1, velocity feedback 

is equivalent to the role of a linear damper and the natural vibration of this structure is 
actively damped. If the feedback gain is properly given, the damping effect also suppresses 
vibration of the supporting base. In order to give a straight demonstration, consider a vibration 
system of three degrees of freedom, the mass, damping and stiffness matrices of which are as 
follows: 
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where g is the feedback gain. 

If the velocity feedback gain varies from 0 to a sufficient large value, the root loci of this 
active system will cross the imaginary axis and enter into the right half plane, as shown in 
Fig.2. As the feedback gain increases, damping ratios increase as well except that of the first 
mode, which is clearly illustrated in Fig. 3. Therefore, there exists an optimal gain that 
ensures the stability and performance of active vibration control or isolation of elastic 
structures. 

 
Fig.3 Variation of damping ratios to feedback gain

 
Harmonic cancellation 
As shown in Fig.3, active damping only changes the damping ratios of natural modes and 



 

attempts to suppress the natural vibration. If the disturbance F in equation (1) is harmonic, the 
effect of active damping depends on the extent to which the frequencies of disturbances are 
close to the natural frequencies. Since active damping may deteriorate certain natural 
vibration as indicated in Fig.3, isolation of harmonic disturbances whose frequencies are near 
the amplification region cannot be achieved. So far, lots of harmonic cancellation techniques 
have been presented to tackle this problem. The mechanism of harmonic cancellation is given 
in Fig.4, where the measured output is the sum of responses induced by the control signal and 
harmonic disturbances, and the transfer path II includes the dynamics of active mounts. The 
amplitude and phase of the counteracting signal are adjusted by the controller, which can be 
either adaptive or fixed, to minimize the output. 

 

 
 

Fig.4 Mechanism of harmonic cancellation 
 

In the block diagram shown in Fig.4, 1G  is usually unknown and 2G can be obtained by 
identification. Suppose the controller is of fixed structure, the transfer function from the 
disturbance d  to the output y is as follows: 

dGIKGy 1
1

2 )( −+=                              (2) 
The sensitivity 1

2 )( −+ IKG determines the attenuation of dG1  at particular frequencies. In 
light of equation (2), the controller K  plays an important role in shaping the sensitivity. 
Therefore, to achieve a maximum attenuation of harmonic vibration, the controller K  is 
expected to have as high gain as possible at those discrete frequencies. However, the 
accompanying problem is the order of K is proportional to the number of sinusoidal 
components and consequently the controller may be difficult to implement in a real system. 
To obviate this circumstance, the controller can be chosen as the inverse of 2G  provided that 

2G  is invertible. Suppose K is the inverse of 2G , equation (2) then reduces to 
dGIGGy 1

11
22 )( −− += μ                            (3) 

where 1
2
−= GK μ , 0>μ . The cancelled output y now becomes 

)1/(1 μ+= dGy                               (4) 
In light of equation (4), increasing the feedback gain μ  will decrease the measured output 
proportionally. But the gain cannot be arbitrarily given when taking into account unmodeled 
high frequency dynamics of the system. A structural system comprises actually an infinite 
number of modes, and an identified model always involves merely the lower order modes. As 
a result, equations (3) and (4) are valid only within a limited frequency band. To guarantee the 
invertibility of 2G , the measurement point should be collocated with the active mount since 
the transfer function from the acting force to the collocated response corresponds to a 
minimum phase system in this special case. The transfer function can be expressed with a 
finite number of modes: 
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where rω is the natural frequency of the system. This transfer function is stable and its phase is 
within °180~0 . 
 
 

EXPERIMENTAL STUDY 
 
The experimental model 

 

Fig.5 The experimental model Fig.6 FRF measurement 

 
The experimental model consists of two elastic plates which are suspended on rubber isolators, 
as shown in Fig.5. There is an active unit (an electromagnetic actuator) installed between the 
two plates, and an accelerometer is placed in collocation with this active unit. The model is 
disturbed by a fan mounted on the top of the upper plate. Running of the fan will force the 
upper plate to vibrate. The active unit is used to counteract the induced vibration in response 
to acceleration sensed by the accelerometer. The fan can also be installed at the lower plate, 
but for the sake of easy installation, it is at the present position, which only changes the 
transfer path I illustrated in Fig.4. 

 
Identification of the transfer path II 
The transfer path II is the transfer function 2G from the signal input to the actuator to the 
measured acceleration. To obtain 2G , the frequency response function (FRF) was measured at 
first with a digital measurement system. As illustrated in Fig.6, the measured FRF includes 
dynamics of the digital signal processing (DSP) board, the actuator, the structure and the 
accelerometer. Fig.7 gives the measured results (non-smooth curves), which exhibits some 
time delay in the loop. In fact, time delay is mainly caused by the DSP board, which needs  

 



 

(a) Magnitude (b) Phase 

Fig.7 The measured FRF (non-smooth) and the identified FRF (smooth) 
 

time to complete signal converting and computation. To derive an analytical model from the 
measured FRF, identification was conducted in the time domain. First, the impulse response 
was obtained from the measured FRF, and then the data were input to the algorithm, ERA, to 
generate a state space model directly. Equation (6) is the algorithm: 
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where the Hankel matrix )1(H is a matrix having one row shift from )0(H , +U is the 
generalized inverse of U  derived from SVD, h  is the discrete impulse response, and 

:),1(U  represents the fist row of U . However, the order of (A, B, C, D) is usually very high 
and renders the identified (A, B, C, D) difficult to use in a real digital system. Therefore, 
model reduction is necessary to deriving a small scale model retaining the dominant modes. 
Fig.7 also gives the FRF of the reduced model, which appears to approximate well to the 
exact one. Given (A, B, C, D), the inverse model of (A, B, C, D) can be obtained by 
exchanging the poles and zeros of BAsICD 1)( −−+  or by direct manipulating matrices (A, B, 
C, D), as is given in equation (7). 
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Experiment of active damping and harmonic cancellation 

Although the simulation results are satisfactory, performance of these active control 
strategies needs to be examined on a real system. Fig.8 illustrates the experimental system 
that consists of all hardware units, in which the digital controller is a TI DSP and its time 
delay is about 0.04ms consumed to complete minimum computation. 

 



 

 
 

Fig.8 Block diagram of the experimental system 
 

To examine the actual cancellation effect of inverse modeling, the inverse model and a 
LPF were coded into the DSP board. Disturbance was simulated by the fan (Fig.5), whose 
fundamental frequency is about 38Hz. Since the disturbance corresponding to this frequency 
was dominant, the upper plate vibrated nearly at a single frequency. Signal transfer through 
the digital controller caused time delay of the feedback loop to increase almost to 0.08ms, 
leading to a reduced gain margin. Therefore, the feedback gain was limited in this experiment. 

Fig.9 (a) is the result of vibration control with harmonic cancellation. The cancellation 
effect is shown to be mainly at the fundamental frequency with a reduction in amplitude by 
over 50%. However, the vibration of natural modes is not suppressed, which is different from 
the simulation results. Fig.9 (b) is the result of vibration control with velocity feedback and 
harmonic cancellation, where the vibration of most natural modes is shown reduced except 
that the natural vibration at about 300Hz has indiscernible changes. From the time series of 
responses one also can see the effect of active control, suppressing vibration of the 
fundamental frequency prominently. 

However, the experimental results are not so impressive as in simulation, which can be 
attributed to time delay in the feedback loop and the flexible support on which the active unit 
was installed. Time delay reduces gain margin of the closed loop and the flexible support 
results in complicated modal characteristics at high frequencies. Both can cause instability of 
the closed loop if unmodeled dynamics become noticeable as feedback gain grows up. 

 

  

  
(a) Harmonic cancellation    (b) Velocity feedback + Harmonic cancellation 

 
Fig.9 Performance of active control strategies 



 

CONCLUSIONS 
 

Active damping and harmonic cancellation based on inverse modeling have been discussed 
with simulation and experiment. According to the obtained results, active damping is effective 
to natural vibration suppression and harmonic cancellation is suitable for counteracting 
harmonic disturbances. However, feedback gain is constrained by time delay as well as 
support flexibility. In other words, the closed loop is conditionally stable for vibration 
control/isolation with flexibly mounted actuators. The presented discussion has only dealt 
with one active mount, which can not give any results about coupling among active mounts. 
Further work needs to be focused on this issue as well as the improvement of harmonic 
cancellation based on inverse modeling. 
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