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Abstract 
Sandwich composite materials have been widely used in recent years for the construction of 
spacecraft, aircraft, and ships, mainly because of their high stiffness-to-weight ratios. The 
dynamic bending stiffness of such materials is difficult to measure because it depends on 
frequency unlike ordinary non-composite materials. In this paper, Nilsson’s sixth-order 
differential equation model is reviewed and the frequency response function method is used 
to characterize the dynamic bending stiffness of sandwich beams with foam filled honeycomb 
cores. The four-point bending method is used to characterize the static bending stiffness.  
Experiments with static and vibrating beams show that these methods can yield good 
estimates for the dynamic bending stiffness.  

INTRODUCTION 

A honeycomb panel is a thin lightweight plate with a honeycomb core with hexagonal 
cells. Layered faceplates are bonded to both sides of the core as shown in Fig. 1. Each 
component is by itself relatively weak and flexible. When combined into a sandwich 
panel, the elements form a stiff, strong and lightweight structure. The facesheets carry 
the panel bending loads and the core carries the shear loads. In general, the 
honeycomb core is strongly orthotropic. The dynamic characteristics should be 
expected to be different in each direction. The two main principal in-plane directions 
x and y are defined in Fig. 1. 
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Figure 1 – Sandwich panel with a honeycomb core 

A large number of papers have been published on the dynamic properties of 
sandwich structures. Among them, the Timoshenko [1] and Mindlin [2] models are 
frequently referenced to. One of the first fundamental studies on the bending and 
buckling of sandwich plates was published by Hoff [3]. In this paper, Hamilton's 
principle is used to derive the differential equations governing the bending and 
buckling of rectangular sandwich panels subjected to transverse loads and edgewise 
compression. Many of the basic ideas introduced by Hoff form the basis for many 
subsequent papers on the bending of sandwich plates. 

Another classical paper was published by Kurtze and Waters [4] in 1959. The 
thick core is assumed to be isotropic and only shear effects are included. The bending 
stiffness of the plate is found to vary between two limits. The high frequency 
asymptote is determined by the bending stiffness of the faceplates. The model 
introduced by Kurtze and Waters was later improved by Dym and Lang [5].  

Common for many of those references is that the governing differential 
equations derived are of the fourth order. For increasing frequencies, the results 
disagree strongly with measured vibrations. 

A more general description of the bending of sandwich beams has been given 
by A. C. Nilsson [6]. In this model, the faceplates are again described as thin plates. 
However, the general wave equation is used to describe the displacement in the core. 
When the frequency is increased, Nilsson’s sixth-order differential equation model 
[6] gives more accurate results.  

The aim of this paper is to describe a simple measurement technique for 
determining some of the material parameters of composite beams. 

THEORY OF SANDWICH BEAMS 

For a honeycomb beam, the lateral displacement w can be determined when 
determining the differential equations governing the motion of the structure. 

From the study of Eva Nilsson [7], the equation governing  is  w
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where  is the bending stiffness per unit width of the beam,  is the bending 
stiffness of a single faceplate, is the mass moment of inertia per unit width, 

1D 2D

ρI µ is 

the mass per unit area, is the effective shear modulus of the core and  is the 
thickness of the core, as shown in Fig. 2. 

eG ct

 
Figure 2 – Excitation of a beam and resulting forces and moments. Dimensions and material 

parameters for faceplates and core are shown 
For free vibrations, the external pressures p is equal to zero and for honeycomb 

panels the moment of inertia can be assumed to be very small. Using these 
assumptions, the resulting equation for  Eq. (1), is reduced to w

 
,022 2

2

1
4

4

22

4

1

21
6

6

2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−
∂∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+

∂
∂

t
w

Dx
wtG

tx
w

D
DD

x
wD ce

µµ
 (2) 

which is the wave equation for the bending of beams neglecting the moment of 
inertia.  

Dynamic bending stiffness 

The corresponding bending stiffness at the frequency  is shown in the following 
equation according to the ref. [7]: 
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where nα  is given in Table 1 for three boundary conditions. 
Boundary conditions n 1 2 3 4 5 n>5 

Free-free 
Clamped-clamped 

 
4.73 7.85 11.00 14.14 17.28 

 

Free-clamped 
 

1.88 4.69 7.85 11.00 14.14 
 

Simply supported 
 

3.14 6.28 9.42 12.56 15.7 
 

nα 2/ππ +n

nα 2/ππ −n

πn
nα

Table 1 –  nα  for three boundary conditions 
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By means of Eq. (3) the bending stiffness can be determined at each natural 
frequency. The accuracy of the procedure depends on how well the boundary 
conditions can be simulated. 

The bending stiffness for a honeycomb panels depend on the bending stiffness 
of each faceplate, the thickness of the faceplates and core and the shear stiffness of 
the core. The general principles governing the bending stiffness of a honeycomb 
panel are discussed in reference [7]. The bending stiffness must satisfy the equation: 

 ,02/12/3 =−+− CDD
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where A, B and C are functions of bending and shear stiffness as follows: 

 .2;
2

;
2 22/1

1
2/1 DCtGB

D
tGA cece ===

πµπµ
 (5)  

Using the measured data these parameters can be determined by means of the 
least square method. The quantity Q is defined by: 
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where is the measured bending stiffness at the specific frequency . The 
parameters A, B and C are to be chosen so that Q has a minimum. This means that the 
constants are solutions to a system of equations obtained from 

iD if

CQBQAQ ∂∂=∂∂=∂∂ /// . By means of this regression analysis, the measured data 
are used to determine a number of parameters in the formula defining the total 
bending stiffness of the beam as function of frequency. In this way the bending 
stiffness can be estimated in the entire frequency range. 

Once the constants A, B and C are determined, the static bending stiffness of the 
sandwich beam  and the bending stiffness of the faceplate  can be determined.  1D 2D

Boundary conditions 

The beam must satisfy certain boundary conditions at each end. The three boundary 
conditions for a beam are summarized in Table 2. β  is the angular displacement due 
to bending of the core. 

Clamped ends 
   

Simply supported ends 
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Table 2 – Boundary conditions for end of beam 
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Vibration measurements 

For lightweight structures, such as honeycomb beams, excitation by a shaker should 
be avoided when the frequency response function (FRF) is measured. The mounting 
of the shaker can change the vibrational modes of the structure considerably. 
Excitation by an impact hammer is preferred. Since mass is not added to the structure 
in such measurements. The structure is given an impact which starts the measurement 
period. Averages are made from 5-12 different excitation points. The drawback with 
impact hammer excitation is that it is difficult to excite the higher modes of the beam. 
For a good measurement result it is important to hit the structure with the hammer 
perpendicular to the surface of the faceplates.  

EXPERIMENTS 

Set up 

In the experiments, the input channel 1 of the dynamic signal analyzer was connected 
to the modal hammer, which gave an impulse to the beam, and input channel 2 was 
connected to the laser vibrometer to detect the response of the beam. The dynamic 
signal analyzer gives the output of the frequency response function of the beam when 
it is excited by the impulse given by modal hammer. The samples were tested with 
the three special boundary conditions: free-free, simply supported-simply supported 
and clamped-clamped. The set up is shown in Fig. 3. 
 

(a)       (b) 
Figure 3 - (a) Experimental setup; (b) Schematic of the experimental setup. 
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Samples 

The sandwich composite structures with honeycomb cores, used in the experiments, 
are shown on Fig.4. The facesheets are made with woven cloth impregnated with a 
resin, and the core is a lightweight foam-filled honeycomb structure. 

The geometry and density of the sample beam used in the experiments is shown 
in the Table 3. 

Length Total thickness of the 
structure 

Thickness of one 
faceplate 

Mass per unit area 

0.6 m 0.00732 m 0.00038 m 2.176 kg/m^2 
 Table 3 - Geometry and density of the sandwich beam.  

 
Figure 4 Honeycomb sandwich composite; (a) core, (b) composite beam. 

RESULT ANALYSIS 

Boundary conditions 

In the measurements, the boundaries were found to have some effect. For a clamped 
beam, shear is induced at the boundaries, thus rendering the beam more flexible as 
compared to a beam with free ends. The natural frequencies of a clamped beam are 
consequently lower than the corresponding natural frequencies for the same beam 
with free ends. Hence, the frequency-dependent stiffness is affected by the 
boundaries. The natural frequencies for the three special boundary conditions are 
shown in the Table 4. This is due to the fact that shear in the beam is induced by the 
clamped boundaries to a larger extend as compared to the case with free boundaries. 
The apparent bending stiffness for the clamped beam is therefore somewhat lower 
than for the beam with free ends as shown in Fig. 5.   

Boundary 
conditions 1 2 3 4 5 6 7 8 9 10 

Free – free 119.2 317.5 582.9 883.0 1206.5 1579.2 1959.9 2345.8 2806.1 3247.3 
Simply supported 
– simply 
supported 

53.7 206.1 431.6 710.2 1022.4   1373.0 1742.4   2113.1   2542.2   2963.8 

Clamped – 
clamped 118 306.2 557.5 860 1188.5 1557.3 1939.2 2331.2 2789.0 3228 

Table 4 - Natural frequencies for the three different beam boundary conditions. 
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Figure 5 - Bending stiffness for the sandwich beam for three different boundary conditions.  
Measurement points *, +  and o : bending stiffness for the natural frequencies of the beam 

with free, simply supported and clamped ends, respectively. 
Solid, dashed and dotted curves: calculated static bending stiffness of the beam with free, 

simply supported and clamped ends, respectively. 

Dynamic bending stiffness 

Since the sample used in the experiments is orthotropic, then in the two principle 
directions, there are two sets of stiffnesses as shown in Fig. 6. The bending stiffness is 
frequency dependent and decreases with increasing frequency. The bending stiffness 
at low frequency is dominated by the bending stiffness of the entire beam. At high 
frequency, the bending stiffness is dominated by the bending of the faceplates only.  
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Figure 6 - Bending stiffness for the sandwich beam.  
 Measurement points * ando : bending stiffness for the natural frequencies in two principle 
directions. Curves –: calculated static bending stiffness, based on material parameters for 

faceplates and core. 
For sandwich beams with isotropic faceplates and orthotropic cores, the 

stiffness in the two principal directions is found to be equal as the frequency increases 
as shown in Fig. 7. 

The static stiffness of the entire beam  and the static stiffness of the faceplate 
 are determined by us of the four-point bending method. In the low frequency 

range, when

1D

2D
0→ω , the first part of the equation is dominant, and then the apparent 

dynamic stiffness is close to . The bending stiffness is consequently determined by 
pure bending of the beam. In the high frequency range, when

1D
∞→ω , and then the 

apparent dynamic stiffness is close to . The faceplates are assumed to move in 
phase. In this frequency range, the bending stiffness for the entire beam is equal to the 
sum of the bending stiffness of the two faceplates. The comparison for the x direction 
is as shown in Table 5: 

22D

Static stiffness by four-point method Two stiffness limits from dynamic characterization 

1D  [Nm] 2D  [Nm] 0→ω  [Nm] ∞→ω  [Nm] 
120 24 122.7 48.6 

Table 5 –Comparison of static stiffness measured by four-point bending method and two 
stiffness limits from dynamic characterization. 

CONCLUSIONS 

Several theoretical models for the determination of the dynamic bending stiffness of 
sandwich beams were reviewed. Nilsson’s sixth-order differential equation model 
was introduced. A simple measurement technique for determining the material 
parameters of composite beams was used. The experimental results show that this 
technique can be used to determine the dynamic stiffness of composite sandwich 
beams.  
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