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Abstract
The description of the acoustic field in lined ducts in terms of modes leads to transcendental eigen-
value equations. These can be cast into a form defining a complex function. Each zero of the function
corresponds to an eigenvalue associated with a mode. A reliable method is proposed for finding zeros
of complex functions within a bounded region of the complex plane. The method makes use of the
Argument Principle to count the zeros of the function prior to a global Newton-Raphson iteration to
find each zero. The method is guaranteed to find all zeros in thegiven region. The number of zeros of
functions of several variables can be counted using the extension of the Argument Principle to several
complex variables. The proposed method is thus suitable forsolving systems of coupled eigenvalue
equations in a given multi-dimensional domain. The algorithm for a coupled eigenvalue solver is de-
scribed, and example applications to problems in duct acoustics are given.

INTRODUCTION

Analytic solutions for the acoustic field in a duct, expressed in terms of modes, may be found when
the geometry is separable. Common examples are uniform two-dimensional ducts, rectangular-section
ducts, and circular-section cylindrical or annular ducts.In such cases, the solution of the wave equation
and boundary conditions may be formulated as an eigenvalue problem. Therefore, central to applica-
tions in duct acoustics is an eigenvalue solver capable of finding all eigenvalues in a region of interest.
This requires the zeros of a complex function to be located. Each zero is an eigenvalue associated with
a mode.

There are well established procedures for locating the required zeros of a real function of a
real variable, but most are not directly applicable to complex functions. Those which are, such as the
Newton-Raphson method, require a good initial estimate of the zero and do not guarantee convergence
to the desired zero, or that all zeros of interest are found.

In duct acoustics problems these difficulties are usually avoided by using so called shooting
methods (e.g., see ref. [1], also [2] and [3]). These consist, in one form or another, of starting an iter-
ation with known eigenvalues, usually for rigid or pressurerelease boundary conditions, and tracking
the eigenvalues in the complex plane as the problem parameters are successively perturbed. The pro-
cedure is iterated until the parameters reach the required values. There still remain difficulties with this
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process however, most notably identifying solutions associated with modes of the surface wave type,
and tracking eigenvalues that come close together, i.e. near “optimum” admittance values.

One other approach follows the line of thought that a zero finding algorithm should incorporate
some means of bracketing the zeros of interest within a bounded region. If, in addition, one had some
means of telling exactly how many zeros fell in the region, one could certainly be satisfied that all
required zeros had been found. This is the approach followedin this paper. Given some bounded region
in the complex plane, count the number of zeros of the function inside the region. Once the number
of zeros in the region is known, refine each zero by repeating aglobal Newton-Raphson iteration
until all zeros are found. To avoid convergence to an alreadyfound zero, each zero is removed from
the function as it is found, by collocation of a simple pole. The underlying theory and a procedure
for counting zeros of complex functions is the subject of thenext section. The refinement stage is
described in the following section. The final section of the paper is devoted to example applications in
two problems in duct acoustics.

COUNTING ZEROS OF COMPLEX FUNCTIONS

Functions of one variable

There is a classical result from complex function theory, usually referred to as the Argument Principle,
which allows precisely to infer how many zeros an analytic function has within a given region. If a
functionf(z) is analytic in some bounded regionD ⊂ C, with no zeros on the region’s boundaryγ,
the number of zeros off in D, counted with multiplicity, is given exactly by

N =
1

2πi

∫

γ

f ′

f
dz. (1)

By making the substitutionw = f(z), equation (1) becomes

N =
1

2πi

∫

Γ

1

w
dw, (2)

whereΓ ≡ f(γ) is the image ofγ under the mappingf . Equation (2) is the definition of winding
number of the contourΓ about the origin. It follows that the number of zeros off enclosed byγ equals
the number of timesΓ winds around the origin. For example, the functionf(z) = z2 − 1 has the two
zerosz(1) = −1 andz(2) = +1. If the contourγ encloses both zeros, then its imageΓ encircles the
origin twice, as shown in figure 1.

b b

γ

z plane
Γ
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Figure 1: Contour of integrationγ enclosing the two zeros of the functionf(z) = z2−1. The image contour
Γ ≡ f(γ) encircles the origin twice.
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One fundamental property of a complex functionf(z), analytic in some domainD, is that it can
only have isolated zeros withinD. Furthermore, ifD is bounded,f can have at most a finite number of
zeros inD. Consequently, the number of zeros off in D must be an integer and finite quantity. This is
a remarkable result, for if one has some means of approximating the integral (1) or (2) in a controlled
way, it suffices to achieve an accuracy within±0.49 of its true magnitude to guarantee that the exact
number of zeros is accounted for. If the boundaryγ is a rectangle with corners labeled anti-clockwise
by z1, z2, z3, andz4, it can be split into four straight pathsγ ≡ γ1 + · · · + γ4, each parameterized by
γi = (zi+1 − zi)t + zi, with 0 ≤ t ≤ 1, andz5 ≡ z1. The number of zeros is then given by the sum of
the integrals over each image pathΓi ≡ f(γi). In order to guarantee that the correct number of zeros
is accounted for, it is then sufficient to calculate each of these path integrals with a precision of, say
0.1.

Perhaps the simplest, effective way of approximating the integral (1) or (2) is through numerical
integration, using the composite Newton-Cotes formulas, the simplest of these being the trapezoidal
rule. The trapezoidal rule is readily applicable to path integrals in the complex plane and is given by

∫

f(z)dz = Sn + Rn, (3)

with the approximation to the integral calculated from

Sn =
(z1 − z0)

2
f(z0) +

(zn − zn−1)

2
f(zn) +

n−1
∑

k=1

(zk+1 − zk−1)

2
f(zk), (4)

and the corresponding absolute value of the error|Rn|, for a discretization of the integration path atn

equally spaced points, bounded from above by

|Rn| ≤
|zn − z0|

3

12n2
max |f ′′|, (5)

wheremax |f ′′| is the maximum value of the second derivative off along the path. Since the error
bound decreases with the number of path sub-divisions, one can obtain arbitrarily close approxima-
tions to the true value of the integral by refining the discretization of the path. The number of zeros
of a complex function can thus be determined reliably by successively applying equation (4) to finer
discretizations of each of the straight pathsγi until |Rn| becomes less than0.1. In practice, since the
integrands are analytic functions, and consequently are well behaved, it suffices to refine the discretiza-
tion until

|Rn−1 − Rn| = |Sn−1 − Sn| < 0.1. (6)

Systems of functions of several variables

Consider a complex function of several complex variablesF : D ⊂ Cn → Cn, analytic inD, with N

zerosz(ν) ≡
(

z
(ν)
1 , . . . , z

(ν)
n

)

, ν = 0, . . . , N − 1, such that

F
(

z(ν)
)

=















f1

(

z
(ν)
1 , . . . , z

(ν)
n

)

= 0
...

fn

(

z
(ν)
1 , . . . , z

(ν)
n

)

= 0

. (7)

It can be shown that the number of zeros of the system (7) in a bounded regionD ≡ D1 × · · · ×Dn ⊂

Cn, counted with multiplicity, is given by (see ref. [4], pp.179)

N =
1

2πi

∫

Γn

dR(∗f, fn)

R(∗f, fn)
, (8)
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whereΓn is the image underfn of the boundaryγn of the regionDn. The resultantR(∗f, fn) of the
functionfn with respect to the system∗f ≡ (f1, · · · , fn−1) is defined by

R
(

∗f, fn

)

=

p
∏

ν=1

[

fn

(

∗z(ν)(zn), zn

)

]µν

, (9)

where∗z(ν)(zn) ≡
(

z
(ν)
1 (zn), · · · , z

(ν)
n−1(zn)

)

are the zeros of the system∗f in the bounded domain
∗D ⊂ Cn−1, andµν is the multiplicity of each zero∗z(ν). The concept of resultant is related to the
Sylvester Matrix, and has its primary use in connection withthe elimination of variables from systems
of polynomial equations. The above extended definition, applicable to general analytic functions, is
given in [4], pp. 178.

To illustrate the concept of resultant consider for instance the function

F (z1, z2) =

{

f1 = sin(z1 + z2)

f2 = z1 cos(z2)
. (10)

Suppose that, in some bounded domainD ≡ D1 × D2 ⊂ C2, and for any givenz2 ∈ D2, f1 hasp

zeros inD1. These are given byz(ν)
1 = ±νπ − z2, and are simple, so thatµν = 1. The resultant off2

with respect tof1 is then

R(f1, f2) =

p
∏

ν=1

f2

(

z
(ν)
1 , z2

)

=

p
∏

ν=1

[

±(ν − 1)π − z2

]

cos(z2), (11)

a function ofz2 only. If, in D2, there areq values ofz2 for whichR(f1, f2) = 0, there are thenp × q

zeros ofF (z1, z2) in D.
In order to count the zeros of a system of complex functions ofseveral variables it is thus suf-

ficient to calculate the integral (8) to within±0.49 of its true value, as for the single variable case.
With relation to a system of two functions of two variablesF (z1, z2) ≡

(

f1(z1, z2), f2(z1, z2)
)

, given
a rectangular regionD2, split the bounding contourγ2 into four straight paths. For a given discretiza-
tion

{

z
(1)
2 , . . . , z

(n)
2

}

of each of the paths construct the resultantR(f1, f2) by taking eachz(k)
2 as a

parameter in the functionf1. For eachz(k)
2 count the number of zeros off1

(

z1, z
(k)
2

)

enclosed byγ1

as for a function of the single variablez1 and find the zerosz(ν)
1 using the refining procedure, which

will be discussed in the beginning of the next section. The value of the resultant for eachz(k)
2 is then

given by formula (9). Approximate successively the integral (8) for each path using formula (4) with
increasing discretization points, until|Sn−1 − Sn| < 0.1. The number of zeros

(

z
(ν)
1 , z

(ν)
2

)

of F is
then the absolute value of the sum of the integrals for each ofthe four paths, rounded to the nearest
integer. This algorithm is readily scalable to systems of any number of functions.

THE ZERO REFINING PROCEDURE

Functions of one variable

Given a randomly chosen pointz(0) within the region of interest, a global Newton-Raphson iteration
consists of calculating successive approximations to a zero of f using

z(k+1) = z(k) −
f
(

z(k)
)

f ′
(

z(k)
) . (12)

The iteration proceeds until eitherz(k+1) becomes within a specified tolerance relative toz(k), or
|f

(

z(k+1)
)

| is less than a specified absolute tolerance, orz(k+1) falls outside the rectangle boundary,
or the number of iteration steps exceeds a specified maximum.The first two events define convergence
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to a zero off , in which casez(k+1) is stored and the number of zeros left to be found is decreasedby
1. In the latter two events, the iteration fails to converge. In this case, the iteration is interrupted and
restarted with a new randomly chosen initial valuez(0).

To avoid repeated convergence to already found zeros, each zero must be removed from the
function as it is found, by collocation of a simple pole. For instance, supposef has two simple zeros
z(0) andz(1) in the region of interest. A refining iteration will find one ofthe zeros, sayz(0). Define a
new functionf (1) which does not have a zero atz(0), but does have a zero atz(1):

f (1)(z) =
f(z)

z − z(0)
. (13)

A refining iteration onf (1) will then find the remaining zeroz(1). If f has a single zeroz(0) with
multiplicity 2 the iteration onf will converge toz(0) and so will the iteration onf (1), indicating that
z(0) is a double zero. In general, iff hasN zeros within the bounded region, the refining procedure is
repeatedN times with the zeroz(ν) being found from the function

f (ν)(z) =
f(z)

(z − z(0)) · · · (z − z(ν−1))
, ν = 1, . . . , N. (14)

Systems of functions of several variables

Without loss of generality, consider once again a system of two functionsf1(z1, z2) andf2(z1, z2).
Suppose, as before, there arep values ofz1 andq values ofz2 satisfyingf1 = 0 andf2 = 0 in a
bounded regionD1 × D2 ⊂ C2. The total number of zeros of the system isN = p × q. The zeros of
the system can be found by applying the refining procedure tof2

(

z
(ν)
1 , z2

)

as a function ofz2, while at

each iteration step finding thep valuesz(ν)
1 that satisfyf1

(

z
(ν)
1 , z2

)

= 0, with z2 taken as a parameter.
Once the iteration onf2 converges, a set ofp zeros of the system has been found.

The remainder of the refining procedure is identical to the single variable case. For each of the
q zeros, an initial value for the iteration is chosen at randomwithin D2. If the iteration jumps out ofD2

or the number of iterations exceeds a specified maximum, the procedure is interrupted and restarted
with a new initial value inD2. If the iteration converges, the set of zeros

{

(z
(0)
1 , z

(k)
2 ), . . . , (z

(p)
1 , z

(k)
2 )

}

is stored. As for the single variable case, the functionf2 is then redefined in order to remove the zero
z
(k)
2 just found. This procedure is repeated until allq zerosz(k)

2 are found.

EXAMPLE APPLICATIONS IN DUCT ACOUSTICS

The 2D lined duct with flow

A 2D uniform duct extends from−∞ to +∞ in the direction of thez coordinate, and is bounded by
locally reactive walls aty = 0 andy = 2h (figure 2). The medium in the duct is assumed to flow
steadily with a uniform profile and Mach numberM . The problem admits separated solutions of the
form p(y, z, ω) = Y (y)Z(z)eiωt which, for duct walls with equal specific admittanceA1 = A2 = A,
and even modes, lead to the eigenvalue equation

kyh sin(kyh) − ikhA

(

1 − M
k±

z

k

)2

cos(kyh) = 0, (15)

where the axial wavenumberk±
z is related to the transverse wavenumberky through the dispersion

relation

k±
z

k
=

−M ±

√

1 − (1 − M2)

(

ky

k

)2

1 − M2
. (16)



J. A. Carrilho
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Figure 2: Schematic of the two dimensional duct with half-height h, flow Mach numberM , and locally
reacting walls with acoustic admittanceA1 andA2.

The left hand side of equation (15) defines the complex function f(ky), and its zeros are the
eigenvalues associated with the modes of even symmetry. Figure 3 reproduces Table 1 of ref. [2] (see
also [3]) in graphical form. It shows the zeros off(ky) found within the rectangle with top right corner
30+2i and lower left corner0− 6i, superimposed on a contour level plot oflog

(

|f |
)

. The parameters
in the calculation wereM = −0.5, kh = 1 andA = 0.72 + 0.42i. The contour levels show the
approximate location of the zeros.

The plots show how all eigenvalues can be found when there arebranch points within the region
of interest. The original rectangular region was split at the branch point, marked with the symbol�, and
the branches of the square root in equation (16) were defined such that the branch cuts radiate away
from each sub-region of interest. The eigenvalues found in this way are all the eigenvalues in the given
region extended to the two sheets of the Riemann surface. Thetopmost plots show the eigenvalues
associated with a positive sense of propagation, whereas the bottom plots show the eigenvalues for
negative propagation. Note in the bottom right plot the eigenvalue with a relatively large imaginary
part, this is associated with a mode of the surface wave type.
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Figure 3: Contour level plot oflog
�
|f(ky)|

�
showing the approximate locations of the eigenvalues corre-

sponding to even modes, for the parametersM = −0.5, kh = 1 andA = 0.72 + 0.42i. The eigenvalues
found within each sub-region are shown by the symbol⊕.
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The lined rectangular duct with flow

Coupled sets of eigenvalue equations can occur in a variety of problems. A classic example is the
problem of the infinite duct of rectangular cross-section, with uniform flow and finite admittance walls
(figure 4). Analytic modal solutions may be found for this problem but the equations for the transverse

M

ky

kx

kz

a

b
A4

A1

A2

A3

Figure 4: Geometry schematic for the rectangular-section duct with flow and different acoustic admittance
on each wall.

eigenvalues become coupled in the presence of flow, through the dispersion relation, and must be
solved simultaneously. The problem is treated in ref. [5]. For A1 = A3 = Ay andA2 = A4 = Ax,
and for even modes in both transverse directions, the eigenvalue equations are















kxa sin(kxa) − ikaAx

(

1 − M
k±

z

k

)2

cos(kxa) = 0

kyb sin(kyb) − ikbAy

(

1 − M
k±

z

k

)2

cos(kyb) = 0

, (17)
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Figure 5: Transverse eigenvalues associated with even modes in both directions for the lined rectangular
duct, for different values of the flow Mach numberM . ka = kb = 10, Ax = 0.1+0.1i, andAy = 0.1−0.1i.
◦ kx, × ky.
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where
k±

z /k =
[

−M ±
√

1 − (1 − M2)(k2
x + k2

y)/k2
]

/(1 − M2). (18)

Upon eliminatingk±
z by substituting equation (18) in equations (17), the left hand side of the

resulting equations defines a system of two complex functions of two complex variablesf1(kx, ky)

andf2(kx, ky). As before, the problem of finding the eigenvalues reverts tofinding the zeros of this
system. Figure 5 shows the eigenvalues found with the coupled solver in the rectangular region with
top right corner at7 + 10i and left bottom corner at0 − 10i, for positive propagation and even modes
in both transverse directions,ka = kb = 10, Ax = 0.1 + 0.1i, andAy = 0.1 − 0.1i. The eigenvalues
kx are shown by the symbol◦, and the eigenvaluesky are shown by the symbol×. The top left plot is
for M = 0. In this case, there is no coupling between the eigenvalue equations, and each eigenvalue
has infinite multiplicity, i.e. every pairing of an eigenvaluekx with an eigenvalueky is a solution of
the system. In the given region, there are5 eigenvalues for each transverse direction, so that there
are in total25 roots of the system (17). The remaining plots show the eigenvalues found within the
same region forM = −0.1, M = −0.2, andM = −0.5. Note that, in order to maintain comparable
scales, the eigenvalues associated with the modes of surface wave type are not shown for the latter
case, although they were found by the solver. The effect of the coupling is well visible and becomes
stronger as the Mach number increases. Where there was one eigenvalue with higher multiplicity, there
is now a cluster of eigenvalues with mulitiplicity1. Within the region of interest, there are5 clusters
of 5 eigenvalues for each transverse direction, again totaling25 pairs satisfying the system (17). Each
eigenvalue in these pairs is now unique.

SUMMARY

In order to express the acoustic field in lined ducts in terms of modes, complex transcendental equations
most be solved. The solutions(s) can be found numerically bylocating zeros of complex functions. The
Argument Principle provides an effective tool for countingzeros of analytic functions in a bounded
region of the complex plane, and is applicable to systems of complex functions in multi-dimensional
domains. The combination of a procedure for counting zeros with a global Newton-Raphson method
provides a reliable eigenvalue solver for systems of coupled eigenvalue equations, guaranteed to find
all eigenvalues in a given bounded region. The solver is particularly suited for use in large scale opti-
mization studies, where there is a need for a robust, reliable, and efficient algorithm for finding zeros
of multi-dimensional complex functions. In addition to these qualities, the algorithm described in this
paper benefits from being simple and easy to implement.
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