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Abstract

The description of the acoustic field in lined ducts in terrhenodes leads to transcendental eigen-
value equations. These can be cast into a form defining a exfyohction. Each zero of the function
corresponds to an eigenvalue associated with a mode. Alelaethod is proposed for finding zeros
of complex functions within a bounded region of the complé&anp. The method makes use of the
Argument Principle to count the zeros of the function primatglobal Newton-Raphson iteration to
find each zero. The method is guaranteed to find all zeros igitle@ region. The number of zeros of
functions of several variables can be counted using thesixe of the Argument Principle to several
complex variables. The proposed method is thus suitabledising systems of coupled eigenvalue
equations in a given multi-dimensional domain. The aldonifor a coupled eigenvalue solver is de-
scribed, and example applications to problems in duct diosusre given.

INTRODUCTION

Analytic solutions for the acoustic field in a duct, expresseterms of modes, may be found when
the geometry is separable. Common examples are uniforndimensional ducts, rectangular-section
ducts, and circular-section cylindrical or annular duisuch cases, the solution of the wave equation
and boundary conditions may be formulated as an eigenvatl@gm. Therefore, central to applica-
tions in duct acoustics is an eigenvalue solver capable diffinall eigenvalues in a region of interest.
This requires the zeros of a complex function to be locatadh&ero is an eigenvalue associated with
a mode.

There are well established procedures for locating theireduzeros of a real function of a
real variable, but most are not directly applicable to carglinctions. Those which are, such as the
Newton-Raphson method, require a good initial estimatb@fero and do not guarantee convergence
to the desired zero, or that all zeros of interest are found.

In duct acoustics problems these difficulties are usualbidad by using so called shooting
methods (e.g., see refl[1], also [2] ahd [3]). These conisisine form or another, of starting an iter-
ation with known eigenvalues, usually for rigid or pressugiease boundary conditions, and tracking
the eigenvalues in the complex plane as the problem parasreete successively perturbed. The pro-
cedure is iterated until the parameters reach the requale@s. There still remain difficulties with this
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process however, most notably identifying solutions assed with modes of the surface wave type,
and tracking eigenvalues that come close together, i.e.“opimum” admittance values.

One other approach follows the line of thought that a zerarfgdlgorithm should incorporate
some means of bracketing the zeros of interest within a bedinefjion. If, in addition, one had some
means of telling exactly how many zeros fell in the regiong @ould certainly be satisfied that all
required zeros had been found. This is the approach follinvibds paper. Given some bounded region
in the complex plane, count the number of zeros of the fundtiside the region. Once the number
of zeros in the region is known, refine each zero by repeatigtpbal Newton-Raphson iteration
until all zeros are found. To avoid convergence to an alrdadyd zero, each zero is removed from
the function as it is found, by collocation of a simple poléeTunderlying theory and a procedure
for counting zeros of complex functions is the subject of tieet section. The refinement stage is
described in the following section. The final section of thper is devoted to example applications in
two problems in duct acoustics.

COUNTING ZEROS OF COMPLEX FUNCTIONS

Functions of one variable

There is a classical result from complex function theoryglly referred to as the Argument Principle,
which allows precisely to infer how many zeros an analytiection has within a given region. If a
function f(z) is analytic in some bounded regi@h C C, with no zeros on the region’s boundayy
the number of zeros of in D, counted with multiplicity, is given exactly by

_1[r
N = QWi[y 7 dz. (1)
By making the substitution) = f(z), equation[{lL) becomes
No L / LI @)
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wherel’ = f(v) is the image ofy under the mapping’. Equation [R) is the definition of winding
number of the contour about the origin. It follows that the number of zerosfadnclosed byy equals

the number of time§ winds around the origin. For example, the functifiz) = 2> — 1 has the two

zerosz()) = —1 andz(®) = +1. If the contoury encloses both zeros, then its imdgencircles the

origin twice, as shown in figuld 1.
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Figure 1: Contour of integratiory enclosing the two zeros of the functiffz) = 2> — 1. The image contour
I' = f(v) encircles the origin twice.
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One fundamental property of a complex functifz ), analytic in some domaiP, is that it can
only have isolated zeros withi. Furthermore, ifD is boundedf can have at most a finite number of
zeros inD. Consequently, the number of zerosfah D must be an integer and finite quantity. This is
a remarkable result, for if one has some means of approxignttte integrall{ll) ol{2) in a controlled
way, it suffices to achieve an accuracy withi0.49 of its true magnitude to guarantee that the exact
number of zeros is accounted for. If the boundaig a rectangle with corners labeled anti-clockwise
by z1, 22, 23, @ndzy, it can be split into four straight paths= 1 + - - - + 74, each parameterized by
i = (zit1 — 2zi)t + z;, With 0 < t < 1, andz; = z;. The number of zeros is then given by the sum of
the integrals over each image path= f(v;). In order to guarantee that the correct number of zeros
is accounted for, it is then sufficient to calculate each esthpath integrals with a precision of, say
0.1.

Perhaps the simplest, effective way of approximating ttegiral [1) or[[2) is through numerical
integration, using the composite Newton-Cotes formulas simplest of these being the trapezoidal
rule. The trapezoidal rule is readily applicable to patlegnals in the complex plane and is given by

[ 11z =5, 4 R, ®
with the approximation to the integral calculated from
(21 — 20) (20 — Zn-1) = (1 — 2z5-1)
Sn =g o) R ) 4 3 T ), @)

and the corresponding absolute value of the ey, for a discretization of the integration pathrat
equally spaced points, bounded from above by

|Zn — Z0|3

Ryl <
|| < 12n2

max |, (5)
wheremax |f”| is the maximum value of the second derivativefoflong the path. Since the error
bound decreases with the number of path sub-divisions, anebtain arbitrarily close approxima-
tions to the true value of the integral by refining the diseedton of the path. The number of zeros
of a complex function can thus be determined reliably by easively applying equatiofil(4) to finer
discretizations of each of the straight pathauntil | R,,| becomes less thanl. In practice, since the
integrands are analytic functions, and consequently alldefeaved, it suffices to refine the discretiza-
tion until

|Rn_1 — Rn| = |Sn_1 — Sn| < 0.1. (6)

Systems of functions of several variables

Consider a complex function of several complex varialiflesD ¢ C* — C", analytic inD, with N
zerosz(V) = (zi”), . .,z,(f)), v=0,...,N —1, such that

AEY, ) =0
F(z)=¢ : @)
Fa(Z 28 =0

It can be shown that the number of zeros of the syském (7) ivadexd regiorD = Dy x --- x D,, C
C™, counted with multiplicity, is given by (see refl[4], pp Q7

1 [ dRCES)
N=omi ) ROL 1) (©)
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whereT’,, is the image undef,, of the boundaryy,, of the regiorD,,. The resultan®(* f, f,,) of the
function f,, with respect to the systefty = (f1,--- , fn—1) is defined by

p Mo
fv fn H |: * (U Zn) » (9)
where*z()(z,) = (z§u)(zn), ceey fl”)l( »)) are the zeros of the systeff in the bounded domain

*D c C"', andp, is the multiplicity of each zeréz(*). The concept of resultant is related to the
Sylvester Matrix, and has its primary use in connection Withelimination of variables from systems
of polynomial equations. The above extended definition)iegiple to general analytic functions, is
given in [4], pp. 178.

To illustrate the concept of resultant consider for instatie function

f1 =sin(z1 + 22)
fa=z1co8(z2)

F(21,Zz) = { (10)
Suppose that, in some bounded dontRin= D; x D, C C?, and for any giverrs € Ds, f; hasp
zeros inD, . These are given b,;/f”) = +vm — 29, and are simple, so that, = 1. The resultant off,
with respect tof; is then

R(f1, f2) = H H (v —1)m — 23] cos(z2), (11)
v=1 v=1

a function ofz, only. If, in D, there arey values ofz, for which R(f1, f2) = 0, there are thep x ¢
zeros ofF'(z1, z2) in D.

In order to count the zeros of a system of complex functiorsegéral variables it is thus suf-
ficient to calculate the integrdll(8) to withiti0.49 of its true value, as for the single variable case.
With relation to a system of two functions of two variablégz, z2) = (fl(zl, z9), fa(z1, 22)), given
a rectangular regiof,, split the bounding contouy, into four straight paths. For a given discretiza-
tion {zél), ceey zé”)} of each of the paths construct the result&ty, f2) by taking eachz(k) as a
parameter in the functiofy,. For eachzék) count the number of zeros ¢f (zl, (k )) enclosed byy;
as for a function of the single variabte and find the zerosl”) using the refining procedure, which
will be discussed in the beginning of the next section. THaesaf the resultant for eachgk) is then
given by formula[[B). Approximate successively the inté@hfor each path using formuIE](4) with
increasing discretization points, untf,,_; — S,,| < 0.1. The number of zeroézl”) ) of F'is
then the absolute value of the sum of the integrals for eatheofour paths, rounded to the nearest
integer. This algorithm is readily scalable to systems gfraumber of functions.

THE ZERO REFINING PROCEDURE

Functions of one variable

Given a randomly chosen point® within the region of interest, a global Newton-Raphsoreiten
consists of calculating successive approximations to@aagf using

(k)

The iteration proceeds until eithef*t1) becomes within a specified tolerance relative:t®, or
| (25+1) ] is less than a specified absolute tolerance; bt Y falls outside the rectangle boundary,
or the number of iteration steps exceeds a specified maximhberirst two events define convergence
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to a zero off, in which case:(**1 is stored and the number of zeros left to be found is decrdaged
1. In the latter two events, the iteration fails to convergethis case, the iteration is interrupted and
restarted with a new randomly chosen initial vahi®.

To avoid repeated convergence to already found zeros, eaohnaust be removed from the
function as it is found, by collocation of a simple pole. Festance, supposéhas two simple zeros
29 andz() in the region of interest. A refining iteration will find one ibfe zeros, say(?). Define a
new functionf ) which does not have a zeroaf’, but does have a zero 4t":

f0 () = L& (13)

z—2(0)°

A refining iteration onf() will then find the remaining zere"). If f has a single zere(®) with
multiplicity 2 the iteration onf will converge toz(?) and so will the iteration orf ("), indicating that
2(0) is a double zero. In general, ffhasN zeros within the bounded region, the refining procedure is
repeatedV times with the zera*) being found from the function

f(z)

f(u)(z): = 20). (2 = 20Dy’ s

N. (14)

Systems of functions of several variables

Without loss of generality, consider once again a systemvoffunctionsf; (z1, z2) and fa(z1, 22).
Suppose, as before, there ar@alues ofz; andq values ofz, satisfyingf; = 0 andf, = 0ina
bounded regioD; x D, C C2. The total number of zeros of the systenNs= p x ¢. The zeros of
the system can be found by applying the refining proceduf@(tof”), z2) as a function ot,, while at
each iteration step finding tr;na/alues,zﬁ”) that satisfyf; (zf”), z2) = 0, with 2, taken as a parameter.
Once the iteration otf; converges, a set gfzeros of the system has been found.

The remainder of the refining procedure is identical to thelsi variable case. For each of the
q zeros, an initial value for the iteration is chosen at randgthin D-. If the iteration jumps out oD,
or the number of iterations exceeds a specified maximum, ibeedure is interrupted and restarted
with a new initial value irD,. If the iteration converges, the set of zet{o{sﬁo), zék)), ce (z%”), zék))}
is stored. As for the single variable case, the funciigis then redefined in order to remove the zero

zék) just found. This procedure is repeated untiltpﬂeros,zék) are found.

EXAMPLE APPLICATIONS IN DUCT ACOUSTICS

The 2D lined duct with flow

A 2D uniform duct extends from-oco to +oc in the direction of the: coordinate, and is bounded by
locally reactive walls ayy = 0 andy = 2h (figure[2). The medium in the duct is assumed to flow
steadily with a uniform profile and Mach numh&f. The problem admits separated solutions of the
formp(y, z,w) = Y (y)Z(z)e™* which, for duct walls with equal specific admittande = A, = A,
and even modes, lead to the eigenvalue equation

kE®
kyhsin(kyh) — ikhA (1 - ]V[f) cos(kyh) =0, (15)
where the axial wavenumbet® is related to the transverse wavenumbgithrough the dispersion

relation
k 2
M+ [1—(1—-M2)( =2
" - ()
- = .

1— M2

(16)
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Figure 2: Schematic of the two dimensional duct with haifsheh, flow Mach numbe/, and locally
reacting walls with acoustic admittancé; and A,.

The left hand side of equatiof{|15) defines the complex foncfik, ), and its zeros are the
eigenvalues associated with the modes of even symmetyrdfyreproduces Table 1 of refl [2] (see
also [3]) in graphical form. It shows the zerosfif, ) found within the rectangle with top right corner
30 + 247 and lower left corned — 64, superimposed on a contour level ploﬂ@§(|f|). The parameters
in the calculation werél/ = —0.5, kh = 1 and A = 0.72 + 0.42:. The contour levels show the
approximate location of the zeros.

The plots show how all eigenvalues can be found when theflgraneh points within the region
of interest. The original rectangular region was split atlhanch point, marked with the symhgland
the branches of the square root in equation (16) were definglithat the branch cuts radiate away
from each sub-region of interest. The eigenvalues founkigway are all the eigenvalues in the given
region extended to the two sheets of the Riemann surfacetopimeost plots show the eigenvalues
associated with a positive sense of propagation, wher@abdtiom plots show the eigenvalues for
negative propagation. Note in the bottom right plot the eigdue with a relatively large imaginary
part, this is associated with a mode of the surface wave type.
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Figure 3: Contour level plot ofog(|f(ky)|) showing the approximate locations of the eigenvalues eorre
sponding to even modes, for the parametefs= —0.5, kh = 1 and A = 0.72 + 0.42i. The eigenvalues
found within each sub-region are shown by the symol
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The lined rectangular duct with flow

Coupled sets of eigenvalue equations can occur in a varfepyalems. A classic example is the
problem of the infinite duct of rectangular cross-sectioith wniform flow and finite admittance walls
(figureld). Analytic modal solutions may be found for this fplem but the equations for the transverse

A, —
~— & I
= b
A,, ::M g\ e
-— k: Az
A,

Figure 4: Geometry schematic for the rectangular-sectiaotdvith flow and different acoustic admittance
on each wall.

eigenvalues become coupled in the presence of flow, thradugldispersion relation, and must be
solved simultaneously. The problem is treated in i€f. [8k B = A3 = A, andAy; = Ay = A,,
and for even modes in both transverse directions, the eidesequations are

EE\?
kyasin(kza) —ikaA, (1 — Mf) cos(kza) =0

v , (17)

Y 2
kybsin(k,b) — ikbA, (1 — M?Z) cos(kyb) =0
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Figure 5: Transverse eigenvalues associated with even sniodeoth directions for the lined rectangular
duct, for different values of the flow Mach numBér ke = kb = 10, A, = 0.14-0.1¢, and A, = 0.1-0.1s.
0 kz, X ky.
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where

KE k= [-M + \/1f (1 — M2)(k2 + k2)/k2] /(1 — M), (18)

Upon eliminatingk* by substituting equatiofi.{l8) in equatiofisl(17), the lefichaide of the
resulting equations defines a system of two complex funstafrtwo complex variableg; (k, k)
and f2(k, ky). As before, the problem of finding the eigenvalues reverfintting the zeros of this
system. Figurgl5 shows the eigenvalues found with the cdwgaiver in the rectangular region with
top right corner at + 104 and left bottom corner &t — 104, for positive propagation and even modes
in both transverse directionkq = kb = 10, A, = 0.1+ 0.1¢, andA, = 0.1 — 0.1:. The eigenvalues
k. are shown by the symbol and the eigenvaluds, are shown by the symbad. The top left plot is
for M = 0. In this case, there is no coupling between the eigenvaluatezms, and each eigenvalue
has infinite multiplicity, i.e. every pairing of an eigenualk, with an eigenvalug, is a solution of
the system. In the given region, there &reigenvalues for each transverse direction, so that there
are in total25 roots of the systenf{17). The remaining plots show the eigleirs found within the
same region fod/ = —0.1, M = —0.2, andM = —0.5. Note that, in order to maintain comparable
scales, the eigenvalues associated with the modes of susfaee type are not shown for the latter
case, although they were found by the solver. The effectettupling is well visible and becomes
stronger as the Mach number increases. Where there wasgamwaiue with higher multiplicity, there
is now a cluster of eigenvalues with mulitiplicity Within the region of interest, there abeclusters
of 5 eigenvalues for each transverse direction, again totabinairs satisfying the systerfi{[17). Each
eigenvalue in these pairs is now unique.

SUMMARY

In order to express the acoustic field in lined ducts in terhmsades, complex transcendental equations
most be solved. The solutions(s) can be found numericallpdsting zeros of complex functions. The
Argument Principle provides an effective tool for countirgyos of analytic functions in a bounded
region of the complex plane, and is applicable to systemswifpdex functions in multi-dimensional
domains. The combination of a procedure for counting zeiits aiglobal Newton-Raphson method
provides a reliable eigenvalue solver for systems of calipilgenvalue equations, guaranteed to find
all eigenvalues in a given bounded region. The solver isqaatrly suited for use in large scale opti-
mization studies, where there is a need for a robust, reljald efficient algorithm for finding zeros
of multi-dimensional complex functions. In addition to seequalities, the algorithm described in this
paper benefits from being simple and easy to implement.
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