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Abstract 
This paper deals with an approach to measure the number of modes 

dominating the vibration response of structures excited in a frequency band : for 

system with low modal overlap the method gives a tool for measurement of modal 

density and for system of high modal overlap it permits to build reduced models from 

measured data.  

INTRODUCTION 

Vibration modes are commonly used to represent behaviour of vibrating systems, 

however in medium and high frequency this representation is not well adapted 

because of  the huge number of modes participating to the response and of modal 

overlap . In this frequency range methods have been proposed to fit with phenomena , 

in particular Statistical Energy Analysis is widely used , Lyon [1]. A key point of 

these approaches is the use  of modal density instead of keeping all modal 

information . Several papers have presented theoretical calculation of modal density 

,that  can also be measured by counting resonance frequencies appearing in frequency 

response functions of vibrating systems , however this is not easy specially for 

inhomogeneous industrial structures . In addition this method fails when modal 

overlap is achieved and  a method based on input  impedance measurement were 

proposed by Bourgine [2] and Clarkson [3] however it is not applicable to  

inhomogeneous structures. Using these and techniques , measurement of modal 

density have been reported for plates and cylinders (Clarkson and Pope [4]  ) or 

sandwich panels (Renji [5]) . 
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In this paper a different  approach is presented to estimate experimentally or 

theoretically the number of modes dominating the vibration response of structures 

excited in a frequency band , namely , the effective modal density describing the 

response can be estimated with dominating eigen values of the iG Matrix .  

When modal overlap is achieved the response is no more dominated by isolated modes 

but by a smaller number of groups of modes  responding together . In this case it is not 

possible to estimate modal density with the present  approach , however a small number 

of eigen vectors of the iG Matrix can be used to directly calculate the response of the 

structure instead of using standard mode decomposition . Experimental application of 

the method appears as an extension for medium and high frequency problems, of 

experimental modal analysis used at low frequency .  

DEFINITION OF THE iG MATRIX 

A linear system is driven at point iX  by an harmonic excitation of angular frequency 

kω and unit amplitude . The response at point jX has the form (1) : 
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The iG Matrix defined in equation (2) characterizes the response of the system at points 

jX and angular frequency kω : 
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The response at point jX when the excitation has the  form (4) can be calculated with  

the iG Matrix as indicated in (5) or (6) . 
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where the driving force vector is introduced as : 
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In these expressions { }or a bar on a capital letter indicate a vector and a double bar 
on a capital letter indicates a matrix .  
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REDUCTION OF INFORMATION TO ESTIMATE THE RESPONSE 

 When medium or high frequency is concerned a lot modes are responding meaning 

that a lot of modal information is necessary for describing exactly vibrations of the 

system . However,  simplified model  can be established by reducing the modal 

information contained in the iG Matrix from eigen values and eigen vectors 

decomposition. One can neglect the second order contributions just ignoring  the 

effects of small eigen values . In a standard procedure one can write the response  in the 

form : 
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 indicates the inverse matrix   (7) 

EXAMPLE OF BEAM LONGITUDINAL VIBRATION 

A beam of length L ,  cross section S , made of homogeneous material , excited by an 

harmonic force of unit amplitude at point iX is considered. The response at point 

jX can be calculated with forced waves decomposition (see [6], chapter 10)    

permitting the iG matrix calculation. Influence of resonant modes number, on 

iG matrix eigen values is presented figure 1,  in the case of well separated modes (low 

modal overlap) .The major conclusion that can be drawn, is that the number of 

significant eigen values indicates the number of modes dominating the response , 

corresponding generally to resonant modes in the excited frequency band , however, 

when the number of resonant  modes is large the number of significant eigen values is 

smaller, for example 30 modes and 25 significant eigen values in case 2 . 
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  6 resonant modes in the excited band,.  30 resonant modes in the excited band  

Figure 1 Modulus of Normalized Eigen values  of the iG matrix in the case of different 

frequency band of excitation . 
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This tendency was expected in the sense that some resonant  modes can have a small 

response because excitation point located close to a node . Thus, dominant eigen 

values of the iG matrix permits estimation  of modal density , however, this modal 

density is associated to a particular excitation point and appears as an effective modal 

density for a given excitation . Eigen vectors are presented in the following by 

plotting a continuous shape function . Figure 3 presents imaginary and real parts plots 

of the first eigenvector . The curves represent displacements along the beam that can 

be used as elementary motion to decompose beam vibration when excited in the 

frequency band . Shapes oscillate with an average wavelength  slowly variable  with 

eigenvalue order . The average wavelength of the first eigen vector shape is 

approximately equal to 2L/24, those of the eleventh eigen vector shape to 2L/29 , they 

lie in between  maximum and minimum natural wave length in the excited band ( 

2L/20 to 2L/35) .  
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Figure 3) Real and imaginary part of the first eigenvector. Excitation at point 0.066L, 

modal overlap varying from 0.2 to 0.35, resonant modes : 20 to 35. 

 

In a second time the influence of modal overlap is studied , it is important because in 

medium and high frequency problems, modes are often overlapping . This is done 

using the same beam as Figure 1, with increased damping loss factor. 
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           Case 1)  modal overlap varying from 0.035 to 0.059.      Case 2) modal overlap varying from 1.120 to 1.880 

 

Figure 4.  Normalized Eigen values  of the iG matrix in the case of different modal 

overlap conditions . .24 resonant modes in the excited band. 
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The important point that can be seen in figure 4 is the decreasing  influence of high 

order  eigen values when modal overlap increases . In this case the method to estimate 

the modal density fails , but it describes reality in the sense that few elementary 

displacement shapes due to modes accumulation  are sufficient to represent vibration 

field . 

 
CALCULATION OF VIBRATION FIELD BY EXPANSION ON EIGEN VECTORS 

For calculating the beam response at instant t  the excitation vector must be defined , of 

course when time is varying the vector is changing  . For sake of simplicity, a single 

excitation vector (representing the state of excitation  at a given time)  is used to 

calculate the beam response, it is constructed randomly in order to have a global 

tendency. In figure 5,  the beam response is reconstructed for a variable number of eigen 

vectors , the case of  16 resonant modes with low modal overlap is considered . The 

exact solution is slightly different  with studied case because of the random choice of 

the force vector .The reconstruction  is improved when the number of eigen vectors 

increases . When it reaches  the number of resonant modes the reconstruction is very 

good however some differences still exist and can be associated to non resonant 

modes contribution . 

When modal overlap is achieved (figure 6), using two eigen vectors to reconstruct the 

displacement field is sufficient to have a good approximation  even if 16 resonant 

modes lies in the excited band . 
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  a) 5 eigen vectors     b) 16 eigen vectors 

Figure 5 . Comparison of exact and reconstructed modulus of vibration 

displacements along the beam for different number of iG matrix eigen vectors. Low 

modal overlap case. 
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  a) 2 eigen vectors     b) 5 eigen vectors 

 

Figure 6 .Comparison of exact and reconstructed vibration field along the beam for 

different number of eigen vectors. Modal overlap varying from 2 to 3.5 in the  

frequency band . 

MEASUREMENT OF MODAL DENSITY ON LIGHTLY DAMPED 

PLATE 

A steel rectangular plate ( 0.6 length, 0.4 width  and 0.0007 thickness) was mounted 

in a rigid frame and transfer functions measured from one excited point to several 

receiving points located all over the plate . A laser vibrometer was used in order to 

scan the vibration field with a regular mesh. iG matrices were measured for different 

frequency band and corresponding eigen values calculated . Each time 380 

measurement points all over the plate, using a regular mesh and 380 frequencies in a 

band, were used . One  example is presented in figure 7, corresponding to the 

frequency band [0 Hz, 190 Hz]. The theoretical number of resonant modes in the 

band  is 21.3 modes . Twenty one significant iG matrix squared normalized eigen 

values appears  in accordance with expected value . 
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Figure 7. Measured  iG matrix normalized eigen values square moduli, 

frequency band [0 Hz, 190 Hz]. 

 

 

RESPONSE OF A HIGHLY DAMPED PLATES FROM MEASURED 

iG MATRIX EIGEN VECTORS 

 

Same measurements were done on a highly damped sandwich panel in order to 

construct the iG  matrix . Eigen values are no more used to measure modal density 

because of modal overlap, but eigen vectors can be used to expand the plate response 

expecting that very few of them are sufficient to obtain a good approximation of 

displacement field.  

The plate response is presented in figure 8 , the exact result is compared to the 

approximate displacement calculated with one and two eigen vectors . Displacements 

are  plotted following the laser scanning order , namely points located on the first line 

then those of the second line , etc .This representation explains low displacement 

values appearing  at a repeated period corresponding to  the first and last  points on a 

line, that are close to boundaries. 

The expected result is clearly demonstrated : one eigen vector expansion is sufficient 

to obtain a quite good prediction , only small differences appear at low vibration level  
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Figure 18 . Comparison of highly damped plate responses calculated directly with  

measured  iG matrix and approximated with : left : 1 eigen vector, left : 2 eigen vectors, 

 frequency band [380 Hz, 570 Hz] . 

 

 

This result validates the possibility , when modal overlap is achieved , of representing 

vibration behaviour of structures excited by broad band forces, by expansion on few 

eigen vectors of  the iG  matrix . This is of high interest in medium and high frequency 

problems where the use of standard mode decomposition in not adapted . 

Experimentally the method appears as an extension of experimental modal analysis 

techniques for medium and high frequency problems .  
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CONCLUSION 

 

In this paper an approach based on the so called iG Matrix has been presented to 

estimate the number of modes dominating the vibration response of structures excited 

in a frequency band. It has been demonstrated that the effective modal density 

describing the response can be estimated with dominating eigen values of the iG  

Matrix . When modal overlap is achieved , that is often the case in medium and high 

frequency acoustic problems , the number of dominant eigen values  of the iG Matrix 

decreases drastically indicating that response is no more dominated by isolated modes 

but by a smaller number of groups of modes  responding together . In this case it is not 

possible to estimate modal density with the present approach , however the small 

number of eigen vectors of the iG Matrix can be used like a reduced model to directly 

calculate the response of the structure instead of using standard mode decomposition . 

The approach has been used experimentally and the possibility of modal density 

measurement demonstrated for plates having low damping . For highly damped 

sandwich panel  , a reduced model built with only two  eigen vectors of the 

experimentally  build iG Matrix was sufficient to approximate accurately the plate 

response . The method appears finally as an extension of standard modal analysis for 

experimental identification of modes at low frequencies . 
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