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Abstract

In many practical outdoor situations, the direct sound path between a noise source
and a receiver is screened by an obstacle. In these situations indirect sound paths
become important, in particular reflections of sound waves. Reflections may occur at
objects such as a vertical wall, but also at the edge of a wood.

In this paper a method is described for the calculation of i) specular reflection from a
vertical wall and ii) diffuse reflection from the edge of a wood. The method is derived
from numerical computations and scattering theory, but the resulting formulas are
simple enough for implementation in engineering models for outdoor noise.

For a reflection from a vertical wall, the height and width of the wall are taken into
account, based on Babinet's principle and results of computations with the Parabolic
Equation method for atmospheric sound propagation. The reflection depends on wind
and temperature profiles in the atmosphere.

A diffuse reflection from the edge of a wood is modeled as a reflection from a single
row of trees, with an effective spacing between the trees that represents the reflection
contribution of trees behind this row. The reflection is calculated by incoherent
summation of the reflected fields of all the trees in the single row. The calculation of
the reflected field of a single tree is based on the theory of scattering of spherical
waves by a cylinder. The model takes into account the height, the average diameter,
and the spacing of the trees in the wood.

1. SET-UP OF THE MODEL

1.1 Reflection from a Wall

A specular reflection from a wall is modeled by means of an image source (see
Fig. 1). The horizontal distance from the image source to the receiver is denoted as R.
The sound pressure level of the reflected sound at the receiver is written as
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L=L, - Ageo — A _Agr _Areﬂ (1)
where Ly is the sound power level of the source, and the remaining terms are
attenuations due to the geometrical divergence of the sound field, atmospheric
absorption, the ground effect, and reflection, respectively. We have 4, =101g 4nR?

and 4, =«,, R, with absorption coefficient o,,. Attenuation A, is defined as the
ground attenuation for propagation from the image source to the receiver (the choice

of the atmospheric sound speed profile for this propagation is discussed in Sec. 2).
The reflection attenuation is expressed as

Areﬂ =-101g(e,,,€,.,.0) - (2)
Horizontal reflection efficiency &, and vertical reflection efficiency &, account for
the finite width and height of the wall, respectively (0 < g < 1, 0 < &, < 1).
Reflectivity p is a material parameter that accounts for absorption of acoustic energy
by the wall (0 < p < 1). For a rigid wall with infinite width and height, we have
Ehor = Ever = p =1 and 4,.n = 0.

receiver

Figure 1. Schematic representation of a reflection by a wall.
Indicated are an image source, effective width 2W measured
perpendicular to the sound path, and distance r, from the
source to the reflector measured along the sound path.
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1.2 Reflection from Trees

Several studies of sound transmission through a wood, or forest, have been reported
[1,2]. Embleton [3] has presented a model study of sound transmission through a
forest, based on the theory of scattering of plane waves by cylinders. Here we present
a model for sound reflection, based on the theory of scattering of spherical waves by
cylinders.

A single tree is modeled as a rigid cylinder. The edge of a wood is modeled as a
single row of cylinders with an effective spacing between the cylinders. The effective
spacing accounts for the contribution to the reflection from trees behind the first row
of trees of the wood. This contribution decreases with increasing density of the wood:
if the spacing between the trees is small, the reflection from the first row of trees
dominates. The value of the effective spacing used in practical calculations should be
based on sound measurements.

In the case of reflection from a row of cylinders, all cylinders in the row scatter
sound in the direction of the receiver. In other words, a reflection from a row of
cylinders is a diffuse reflection. We use the single-scattering approximation, so the
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total field reflected by the row of cylinders is equal to the sum of the single-scattered
fields of the cylinders. Multiple scattering between cylinders is neglected. This is a
reasonable approximation for the reflection from the edge of a wood (but not for
propagation through a wood).

The scattered fields may be summed coherently, but in practice there is always
coherence loss due to atmospheric turbulence. This can be taken into account by a
coherence factor [4]. In the limit of strong turbulence, the summation becomes
incoherent. From numerical computations we concluded that incoherent summation
may be applied for practical calculations.

For computational efficiency, we divide the row of cylinders into a number of
segments (see Fig. 2). The energy from segment n is approximated by N, times the
energy from a ‘central’ cylinder, where N, is the number of cylinders in the segment.
The sound pressure level of the reflected sound is given by the following incoherent
sum over the segments:

L= 101g(ZNn10Ln“°] 3)

where

Ln = LW,n - Agea,n - Aatm,n - Agr,n - Areﬂ,n (4)
is the contribution to the sound pressure level from the central cylinder in segment 7.
The attenuations Ageo s, Aaimn, and Ag., are defined as in the previous section. The

reflection attenuation is expressed as
Areﬂ,n =-10 lg(gverpn ) (5)

with vertical reflection efficiency &, and reflectivity p, (0 < g, < 1, 05 p, < 1).
Note that the horizontal reflection efficiency is absent in Eq. (5). This is because the
reflection is calculated by summing over the row of cylinders. The horizontal size
effect is taken into account ‘automatically’ by this summation.

Vertical reflection efficiency &, represents the effect of the finite height of the
trees. This is analogous to the effect of the height of a wall on a reflection from the
wall. Therefore we use the expression for the vertical reflection efficiency &, of a
wall reflection also for a reflection from a row of trees. This expression is derived in
Sec. 2. For a row of trees, we use the average tree height in this expression instead of
the wall height. An expression for reflectivity p, is presented in Sec. 3.

receiver

source
Figure 2. Reflection from a row of cylinders.
The row is divided into a number of
; ; ( ! T segments, and each segment is represented
' segment n-1 :segient n:segmentn+1 by q central cylinder, indicated as a gray
/ circle. An image source is also indicated.
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2. REFLECTION EFFICIENCY

2.1 Reflection Efficiency of a Wall in a Non-Refracting Atmosphere

In this section, an expression is presented for the reflection efficiency of a screen, or a
wall, in a non-refracting atmosphere. This expression is based on results of numerical
computations of sound reflection from a vertical rigid screen with infinite width. The
computations were performed with the Parabolic Equation (PE) method [4]. The
reflection is taken into account by a Kirchhoff approximation: upon reflection the
sound pressure at grid points above the screen is set equal to zero. This approach is
analogous to the Kirchhoff approach with PE for diffraction into the shadow region
behind a screen [5].

The geometry is shown in Fig. 3. For the PE computations we used the
equivalent geometry in Fig. 6. The only difference between Figs. 3 and 6 is that in
Fig. 3 the propagation direction is reversed at the reflection while in Fig. 6 it is not
reversed. The screen height is denoted as H. The source and the receiver are at
distances r, and . from the screen, respectively. The PE computations were
performed for a rigid ground surface and a non-refracting atmosphere.

Figure 4 shows PE results of relative sound pressure level AL=-4,, - 4,,, for

8r
six combinations of frequency f and distance r,, and five heights H. In this case
Eq. (2) reduces to 4,, =-10lge,,, . For large H we have 4,, -0 or ¢, —1, and
AL — —A4,, (in this case, — 4,, ~6dB). This limiting behavior for large H is observed

in Fig. 4. We see further that AL decreases with 6 dB by halving H, AL decreases with
3 dB by doubling r,, and AL increases with 3 dB by doubling f. Therefore we write
Eop = min(l, aH’ | Ar, ) (for a non-refracting atmosphere) (6)

ver *

where A 1is the wavelength and « is a constant. To determine constant &, we have
plotted in Fig. 5 PE results for 4,.; versus —10lg¢ ., with &, from Eq. (6). The line

represents the best fit, and corresponds with a=4.5. The PE results in Fig. 5 were
determined from the results in Fig. 4, for receiver range »= 1000 m, using the
relations 4,, =-AL- 4, and —A4, ~6dB(this value of A4z was verified by a PE

computation for H =o0).

Equation (6) is valid for . > r,. For situations with 7, <r,, reciprocity implies
that the expression can be used with r; replaced by 7,. Equation (6) is valid for a
non-refracting atmosphere. The vertical reflection efficiency in a refracting
atmosphere is studied in the next section.

ver 2
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. H Figure 3. Geometry of reflection from a
soJrce screen on a ground surface.
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Horizontal reflection efficiency &, follows directly from Eq. (6) if we use the
fact that horizontal gradients in the atmosphere are small, so horizontal refraction can
be neglected. From a comparison of Figs. 1 and 3 we see that height H corresponds
with width W (the symmetry with respect to the rigid ground surface in Fig. 3 implies
that the effective screen dimension is 2H). This gives

&, = min(l,on2 / Ar, ) (7)

2.2 Reflection Efficiency of a Wall in a Refracting Atmosphere

The vertical reflection efficiency depends on the vertical sound speed profile in the
atmosphere. To explain this, we first recall that the geometry in Fig. 3 is equivalent to
the geometry in Fig. 6. It follows from Babinet’s principle [6] that the sum of the
received field in Fig. 6 and the received field in the complementary geometry in
Fig. 7 is equal to the received field in the geometry without obstacles in Fig. 8.

We will now derive a relation between the vertical reflection efficiency and the
screen attenuation in the geometry in Fig. 7. We write the received sound pressure in
the situations in Figs. 6, 7, and 8 as p,, p», and p,, respectively. We ignore the ground
reflection, for simplicity. Babinet’s principle gives p, + p, = p.. From Eq. (2) with

&or=1and p=1wehave | p, ’=¢,, | p, |- We also have p, =D p,, where D is the

(complex) spherical-wave diffraction coefficient [4,7]. Here we assume that the
receiver is in the sound shadow of the screen. The screen attenuation 4, is related to
Dby A, =-201g(|D|). From the above expressions we have p, =(1-D)p,. From

the approximation D = Re(D), we find

g, =(1-D)* = (1-107%/ ] (8)
By PE calculations for a non-refracting atmosphere we verified that this relation is a
reasonable and practical approximation. In Ref. [8], a simple model for the screen
attenuation A, as a function of the sound speed profile is described. By using Eq. (8),
this model can also be applied to calculate the vertical reflection efficiency as a
function of the sound speed profile.

The (effective) sound speed includes the wind component in the propagation
direction [4]. Consequently, the sound speed profile is different for the two segments
of the propagation path in Fig. . We adopt a practical approach and use the profile
corresponding with the longer of the two segments. For the ground attenuation A,
(see Sec. 1) the same profile is assumed.

3. REFLECTIVITY OF THE EDGE OF A WOOD

In this section, an expression for reflectivity p, in Eq. (5) is presented. The edge of a
wood was represented by a row of cylinders in Sec. 1. For the calculation of
reflectivity p,, infinitely long cylinders are assumed. The finite height of the trees is
accounted for by the vertical reflection efficiency described in the previous section.
From the theory of scattering of spherical waves [9-11] we have derived the
following expression for reflectivity p, of a cylinder in segment n:
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2
Py = |36, cos(m 3, N1 H. Gk, )~ ) 9)

HY (ka)|
where ¢, is the scattering angle and ry, is the distance from the source to the
cylinder (see Fig. 2), k= w/c 1s the wave number, « is the radius of the cylinders, and
& =1, g,=2 for m>1. Further, #" is the Hankel function of the first kind, #{"" its
derivative, and J,' the derivative of the Bessel J-function. For numerical

calculations, the sum in Eq. (9) can be truncated at m = 40. Equation (9) is valid for
situations in which the (central) cylinder is closer to the source than to the receiver.
Reciprocity may be applied if the cylinder is closer to the receiver than to the source.

Figure 9 shows an example of reflectivity p, given by Eq. (9) as a function of
frequency. Figure 10 shows an example of a reflection at 1000 Hz from a 1000 m
long row of equidistant, infinitely long cylinders, for four values of cylinder diameter
2a (the row of cylinders can be considered as infinitely long). The graph shows the
relative sound pressure level AL, defined as the level of the reflection minus the level
of a reflection from an infinite rigid wall at the position of the cylinders, as a function
of distance d between neighboring cylinders (measured between the axes).

The relation between AL and d is simple in this case: AL = —101g(d /2a). This
implies that the reflection from an infinite row of trees can be calculated with Egs. (1)
and (2) for a wall, using the expression p = 2a /d for the reflectivity. In the limit that
all cylinders touch each other, we have d=2a, and p=1. In other words, the
reflectivity of an infinite, connected row of cylinders is equal to unity. For low
frequency (ka <<1), Eq. (9) yields a limiting value of the reflectivity for d = 2a that
is smaller than unity. This is probably a consequence of the single-scattering
approximation, as one expects that a row of connected cylinders acts as a rigid wall
also at low frequency. A practical approach is to model the edge of a wood as a wall
with reflectivity p = 2a /d for all frequencies.

Acknowledgement. This work was supported by the Dutch Ministry of
Defence (DRMW).

REFERENCES

[1] M.A. Price, K. Attenborough and N.W. Heap, “Sound attenuation through trees:
measurements and models,” J. Acoust. Soc. Am. 84, 1836-1844 (1988).

[2] M. Swaeringen et al, “Survey of research on sound propagation in forests,” Proc. 8th
Symp. on Long-Range Sound Prop., Pennsylvania State University, 1998, pp. 131-138.
[3] T.F.W. Embleton, “Scattering by an array of cylinders as a function of surface
impedance,” J. Acoust. Soc. Am. 40, 667-670 (1966).

[4] E.M. Salomons, Computational Atmospheric Acoustics (Kluwer, Dordrecht, 2001).
[5] E.M. Salomons, “Diffraction by a screen in downwind sound propagation: a parabolic-
equation approach,” J. Acoust. Soc. Am. 95, 3109-3117 (1994).

[6] E. Skudrzyk, The Foundations of Acoustics (Springer, Wien, 1971) pp. 518-519.

[7] A.D. Pierce, Acoustics. An Introduction to its Physical Principles and Applications
(American Institute of Physics, Woodbury, 1991).



ICSV13, July 2-6, 2006, Vienna, Austria

[8] E.M. Salomons, “Noise barriers in a refracting atmosphere,” Applied Acoustics 47,
217-238 (1996).

[9] J.R. Wait, Electromagnetic radiation from cylindrical structures (Pergamon, London,
1959) pp. 1-28.

[10] J.J. Bowman, T.B.A. Senior and P.L.E. Uslenghi, Electromagnetic and acoustic
scattering (North-Holland, Amsterdam, 1969) pp. 92-128.

[11] P.M. Morse and K.U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968).

125Hz 25m 125 Hz 50 m 50Hz 10m
10
16 m
8m m
am —
5 4m 16 m iemm
4m \/;‘
0 2m 2m
2
-5 1im 1m
im
-10
0 500 1000 O 500 1000 O 500 1000
250Hz 25m 250 Hz 50 m 1000 Hz 200 m
10

1
8 m
 S— 4 1,
2m
m

OV\/\N 2m 2
im

-10
0

relative sound pressure level (dB)

500 1000 O 500 1000 O 500 1000
range (m)

Figure 4. PE results for relative sound pressure level AL versus receiver range r = rs + 1,
for six combinations of f and r, (indicated above the graphs) and five values of H (indicated
on the right of the graphs). The results are for a non-refracting atmosphere, a rigid ground,
a source height of 2 m and a receiver height of 2 m.
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Figure 6. Geometry that is equivalent to the
geometry shown in Fig. 3 (in the Kirchhoff
approximation).

Figure 7. Complementary geometry of the
geometry in Fig. 6.

Figure 8. Geometry similar to the geometry in
Figs. 6 and 7, but without obstacles.

Figure 9. Reflectivity p, given by Eq. (9) as a
function of frequency, for a = 0.2 m, ry, = 50 m
and o¢, = 0.
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Figure 10. Relative sound pressure level of reflected field at 1000 Hz as a function of the
spacing between the cylinders (incoherent summation). A top view of the geometry is shown
on the right of the graph.



