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Abstract.   
We developed a mathematical approach for predicting acoustic scattering from a 
wedge for various boundary conditions and wedge material properties.  Our 
approach includes wedge boundary conditions that can be characterized by an 
impedance, including absorption.  Numerical predictions are found using the 
Kontorovich-Lebedev transform [A. Erdelyi, Higher Transcendental Functions 
(McGraw-Hill, 1953)] based upon MacDonald functions, requiring very high 
precision numerical techniques.  We apply this numerical approach to calculate 
the scattering amplitude for a fabricated wedge structure that has been measured 
in non-laboratory environment. 

 
INTRODUCTION 

 
Solutions for the acoustic wedge problem that can be found in the early literature 
concern exclusively the case of an impenetrable wedge.  These analytical results 
fall roughly into three classes: 

(1) Eigenfunction expansions (e.g., Ref. [1]). 
(2) Integral expressions based on Sommerfeld’s work, see e.g., Ref. [2]. 
(3) Direct solutions of the wave equation with subsequent development of 

asymptotic expansions [3] which is of interest here.  
 We shall be interested mainly in the case of distant sources (i.e. incident plane 
waves).  The plane-wave case can be considered a special case of point sources 
being moved to infinity.  This will, however, only lead to plane waves incident 
normally onto the wedge’s edge, oblique incidence having been treated by 
Carslaw [2] only.  We shall base our following considerations on the 
developments of type (3).  It will then be necessary for us to assume point or line 
sources and to subsequently specialize to normally-incident plane waves.  The 
theory of Ref. [3] will be generalized to a wedge with impedance boundary 
conditions, and the surface impedance corresponding to a lossy acoustical coating 
will be obtained. 
 

SOLUTION OF THE WEDGE PROBLEM FOR AN IMPEDANCE  
BOUNDARY CONDITION 

 



In this section, we generalized the solution which was found by Oberhettinger [3] 
for the scattering of a sound wave from the edge of a perfectly reflecting wedge, 
to the case that the field does not satisfy a Dirichlet or Neumann boundary 
condition on the wedge surface, but an impedance boundary condition.  Such a 
condition is capable of describing the effect of a lossy coating on the wedge 
surface.  The acoustic impedance obtained in a later section of this study.   

First, we consider a line source Q(ρ΄φ΄) parallel to the edge of the wedge; we 
use cylindrical coordinates (ρ,φ,z) where the z-axis coincides with the edge.  
Observation of the field takes place at P(ρ,φ) and the geometry is assumed for a 
wedge with opening angle α>π/2, i.e. for a wedge in the true sense.  The acoustic 
field is assumed with time dependence 
 

Φ = U(ρ,φ)exp(iωt)                                                                                       (1) 
 

where U satisfies the two-dimensional wave equation ∆2U + k2U = 0.  This 
equation is solved by outgoing waves of the reflected field, 
 

U = exp(±iµφ)Hµ
(2)(kρ)                                                                                  (2) 

 
containing the Hankel function with index µ left open.  Oberhettinger [3] chooses 
to temporarily convert this wave problem into an exponential-decay problem by 
setting k ≡ 2µ/λ ≡ ω/c = -iγ with corresponding change Φ = U(ρ,φ)exp(γct), ∆2U – 
γ2U = 0, and a corresponding solution  
 

U = exp(±iµφ)Kµ(γρ)                                                                                      (3) 
 

containing the modified Hankel function (or MacDonald function) 
 

Kµ(z) = -(iπ/2)exp(-iµπ/2)Hµ
(2)(-iz).                                                                  (4) 

 
The wave problem solution is obtained by substituting γ = ik at the end, and 
convergence problems are avoided in this way. 

The incident field, emitted by the line source Q(ρ΄φ΄) and observed e.g at 
point P(ρ,φ), is given by  
 

Ui = H0
(2)(kr) = (2i/π)K0(γr) = (2i/π)K0(γ[ρ2 + ρ′ 2-2ρρ΄cos(φ-φ΄)]½.              (5) 

 
The total field U consists of the incident field Ui plus a reflected field Ur that has 
no singularity within the wedge, U = Ui + Ur.  This total field has to satisfy the 
appropriate boundary conditions on the wedge surfaces.  In our case, this is the 
impedance boundary condition.  Acoustic impedance Z of the surface is defined 
as the ratio Z = p/vn, where p is the acoustic pressure and vn the normal 
component of the particle velocity pointing into the impedance medium.  We may 
consider our solution Φ to represent the velocity potential of the field, from which 
p and v can be derived as  
 



P = ρ0∂Φ/∂t = iρ0ωΦ = iρ0ωUexp(iωt) = ρocγUexp(γct)                                (6) 
 
where ρ0 is the density of the ambient acoustic medium, and 
 

v = -gradΦ = -gradUexp(iωt) = -gradUexp(γct).                                            (7) 
 

Accordingly, ρ0cγU = ±Z∂U/ρ∂φ will be our boundary condition on the walls φ = 
π and φ = α of the wedge, respectively, with Z a given function determined by the 
acoustic properties of the wedge surfaces.  For a wedge that is coated by a lossy 
material, an expression for Z will be obtained in a later portion of this study. 

In order to facilitate satisfying the boundary conditions for our field U = Ui + 
Ur it will be expedient to introduce integral representations for Ui and Ur as given 
by Oberhettinger [3] (representing a Kontorovich-Lebedev transform): 
 

Ui = (4i/π2)∫∞0 Kiν (ρφ)(γρ΄)cosh(v(π-│φ-φ΄│))dν                                         (8) 
 
which, with µ = iν, has the desired form of Eq. (3), and  
 

Ur = (4i/π2)∫∞0Kiν(γρ)Kiν(γρ΄)[f1(ν)exp(νφ) + f2(ν)exp(-νφ)]dν,                     (9) 
 
which is also of this form and which contains the unknown functions f1 and f2 to 
be determined by the boundary conditions. 

At φ = 0, the boundary condition leads to f1 + f2 + C0 = β(f1 - f2 + S0), where 
we have introduced the notations C0 = cosh (ν(π-φ΄)), S0 = sinh(ν(π-φ΄)) and β = 
ζν/γρ, where ζ = Z/ρ0c is called the specific acoustic impedance of the surface.  
Using the notation Cα = cosh(ν(π-α + φ΄)), Sα = sinh(ν(π –α + φ΄)), these equations 
are solved for f1 and f2 to give  
 

f1(ν) = (1/2)[(1-β)(Co - βSo)eνα-(1 + β)(Cα- βSα)]/[2βcoshνα + (1+β2)sinhνα],   
(10a) 

 
f2(ν)=-(1/2)[(1 + β)(Co – βSo)eνα-(1-β)(Cα-βSα)]/[2βcoshνα + (1 + β2)sinhνα].  

(10b) 
 

These expressions, inserted into Eq. (9), then lead to the explicit solution for the 
reflected velocity potential Ur given by Eq. (9) in integral form; for Dirichlet or 
Neumann boundary conditions, the total solution for U = Ui + Ur would then 
correspond to Oberhettinger’s Equation (14). 

It is quite possible that the wave problem solution can be directly obtained out 
of the exponential-decay problem solution (substituting γ = ik) with a convergent 
integral if the “principle of minimal absorption” is employed (since in practice the 
ambient medium in which the acoustic wave propagates, is ever so slightly 
absorptive).  This corresponds to replacing k in the substitution γ =ik by k + iε, 
ε>0 which renders the integral convergent at its upper limit (and then letting ε 
→0).  We shall show below that numerically convergent forms of integration can 
be found in this way. 



This latter development was done for a plane-wave incident field, which is 
probably for us the most interesting case.  The way this was carried out by 
Oberhettinger is by first transforming the line-source case into the point-source 
case by an additional integration, Eq. (26) of Ref. [3], and then letting the point 
source position tend to infinity.  We here propose to obtain our incident plane-
wave solution from the line-source solution, Eq. (9), or from corresponding 
equations of our subsequent developments, by letting our line source tend to 
infinity, and, of course, reverting from the exponential-decay case to the wave 
case by replacing γ by ik. 

The results of our numerical evaluation of the integrals in the scattering 
solution will be presented in a subsequent section of our study, see below.  At this 
point, however, we shall proceed to the other topic of the investigation, namely to 
derive expressions for the surface impedance that apply when physical boundary 
planes are covered by a lossy acoustic coating. 
 

OBTAINING THE SURFACE IMPEDANCE OF A COATED PLANE 
 

The surface impedance will be found for the case of an absorbing solid layer 
bounded by a fluid (water) on one side, and by a metal substrate on the other, see 
Fig. 1.  If the absorbing layer on top of the metal has sufficiently high 
absorptivity, it can be treated as a semi-infinite medium and the presence and 
configuration of the metal substrate will not have any relevance.  The surface 
impedance Z that enters our solution of Eqs. (9) and (10), through the parameters 
β and ζ will thus be calculated on that basis.  This calculation can follow the 
procedure taken by Brekhovskikh [4].  The geometry is shown in Fig. 1.  A wave 
k1 is incident through the fluid onto the fluid-solid boundary under the angle  θ1, 
and reflected back into the fluid under the same angle.  In the solid, there is a 
compressional wave k2 emitted under the angle θ2, and a shear SV wave (vertical 
polarization) κ2 emitted under the angle γ2.  No SH wave is created in the solid 
since an incident compressional wave whose particle motion takes place in the xz 
plane cannot accomplish this. 

The angles are governed by Snell’s law which guarantees that the horizontal 
wave vector components ξ are the same in both media:  ξ = k1sinθ1 = k2sinθ2 = 
κ1sinγ2, allowing the satisfaction of the boundary conditions independently of the 
values of x.  The boundary conditions are, explicitly, the continuity of the stress 
tensor components σzz and σxz in the z direction, as well as of the z component of 
the particle displacements  uz (no continuity of ux applies since the fluid may slip 
freely along the boundary). 

Following Brekhovskikh’s procedure, the result will furnish for us the overall 
surface impedance Z needed in our wedge problem, i.e. in the eqs. for Ur, β, ζ,  f1 
and f2.  To this end, we relate the quantities p and vn in our expression for Z.  This 
gives the desired surface impedance of the coating as 
 

Z = Zo(1 + V)/(1-V),                                                                          (11) 
 



expressed by the individual impedances Zo = ρ1c1/cosθ1, ZL = φ2c2/cosθ2, ZT = 
ζ2b2/cosγ2 with b2 the shear speed in the coating, and the reflection coefficient 
 

V = (ZLcos2 2γ2 + ZTsin 2γ2-Zo)(ZLcos22γ2 + ZT sin22γ2 + Zo).            (12) 

The result, not found in Brekhovskikh’s book, constitutes a very attractive 
expression for Z, i.e. as the intrinsic surface impedance Zo = ρ1c1/cosθ1 of the fluid 
modified by the reflection coefficient (V) from the solid-coating half space.   

Since the case may arise where the absorbing solid coating layer is thin 
enough so that the effect of a substrate beneath the layer becomes noticeable, we 
here obtain the surface impedance on the fluid-coating interface this situation 
arises the surface impedance on the fluid-coating interface for this situation also.  
(The above derivation has assumed that the layer is of semi-infinite thickness). 

A study for a related situation was carried out by Glegg [5], who assumed a 
fluid column of height h, density ρ1 and sound speed c1 overlying a solid sediment 
layer of thickness d, density ρ2 and compressional (shear) speed c2(b2) which in 
turn is lying on top of a semi-infinite substrate of density ρ3 and compressional 
(shear) speed c3(b3).  His results can be used for our case, including a metal 
substrate with appropriate parameters.   

Using the corresponding developments furnishes an explicit expression for Z 
to be utilized in Eqs. (10a, b) in order to obtain the scattered field, Eq. (9), from a 
two-layered impedance covered wedge. 
 
 
 

 
NUMERICAL RESULTS 

 
This section will present some examples of calculated values of surface 
impedance, and of scattering strength based on the above-presented theories.  
Figure 2 plots vs. frequency the dilatational impedance of the commercially 
available coating material Rubatex, manufactured by RBX Corporation, Roanoke, 
VA.  Figure 3 shows the 2-layer effective impedance of a ½″ steel plate coated 
with 1" of Rubatex at 1kHz, vs. incident angle from the normal.  It is found that 
with a doubling of the Rubatex coating, a substantially reduced effective surface 
impedance is achieved.   

As to scattering from a wedge, Figure 4 shows the target strength of an 
impedance wedge of opening angle 10o.  Plots are for coating material when only 
the real or the imaginary parts are considered alone, and where the complete 
complex impedance is considered, being Z = 5.4 x 105(1 + 0.01i).  The incident 
wave propagates along the bisector of the wedge, and the scattered wave is 
observed at 1 km distance on the bisector.  Some results for a coated wedge were 
also obtained by Norris and Osipov [6], using a theory by Malyuzhinets.  

 
SUMMARY 

 



This study considers wedges coated with absorbing material of one or two layers.  
The absorptivity of layered coatings is studied as a function of layering , using 
theories of Brekhovskikh or Glegg.  A coating material of a given impedance 
(describing its absorptivity) is considered to be attached to the outside of a steel 
wedge, and the target strength of such a coated wedge is obtained using our 
mathematical approach based on the theory of Oberhettinger. 
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