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Abstract 
Planar Near-field Acoustic Holography (PNAH) is nowadays implemented at various 

companies and institutes. At all times, seemingly correct acoustic images are created that are 

treated accordingly. Caution has to be taken while interpreting these results, since 

incompetent windowing and filter implementation leads to results that are far from the exact 

solution. In order to avoid certain cases and probable misinterpretations, a number of recent 

developments were made. A significant part of the most recent developments are discussed 

shortly, followed by an in-depth comparison and verification of results, based on both sound 

pressure and particle velocity measurements. 

Various anti-leakage windowing techniques will be discussed and compared. Border-padding 

is compared to classical windowing on larger grid sizes. Sound pressure and particle velocity 

measurements on various distances on a stationary spinning hard disk are used to obtain 

inverse solutions. Also, multiple distances are measured and compared to the obtained 

inverse solutions. The flat top cover of the hard disk is scanned by a traversed laser vibration 

system. These velocities of the cover are compared to inverse solutions of the particle 

velocity at the source plane, where both sound pressure and particle velocity are used to 

obtain these results. This makes it possible to quantitatively compare pressure to velocity and 

velocity to velocity PNAH. 

INTRODUCTION 

The use of Fourier Transforms in acoustic imaging is very beneficial in terms of 

processing speed and complexity, while it provides a very accurate solution to the 

inverse solution of the wave equation. On the other hand, application of the Fourier 

Transform requests a thorough knowledge of sampling theory and requirements for 

proper transforms. In theory inverse acoustic problems are accurate and some even 
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exact in continuous forms, but in practise we deal with finite measurement grids with 

discrete spatial sampling, acoustic sensors and measurement systems which introduce 

noise, distortion and certain boundaries. These practical factors should not be ignored 

and play an important role for inverse acoustic methods to be successful.  

In the following, a well-known technique developed in the 80’s of last century, 

PNAH [1], is discussed, with some thoughts and tools to deal with more practical 

aspects and possible errors. These will be illustrated by a practical case with particle 

velocity and sound pressure measurements on an operational hard disk. The results 

after solving the inverse problem are compared to laser vibrometer measurements.  

THEORETICAL OUTLINE 

Pressure and Velocity Based Planar Near-field Acoustic Holography 

PNAH is characterized by the use of the spatial frequency domain, or k-space, in 

order to obtain the inverse solution of the wave equation. In k-space a relatively easy 

solution for the inverse problem of complex sound pressure or particle velocity at a 

distance hz  (hologram plane) to an arbitrary distance z  can be obtained. The 

boundary condition for the distance z  is 0≥z , where the half-space 0<z  is defined 

as the source space. Outside the source space sound sources are not allowed. This 

means we can calculate sound pressure and particle velocity at an infinite number of 

planes parallel to the source plane 0== szz , in between hz  and sz . From [2] it 

follows that 
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by using Euler’s equation the particle velocity in normal direction ( )ω,,,~̂ zkkv yxz  can 

be determined from the sound pressure in k-space:  
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The part after ( )ω,,,~̂
hyx zkkp  in both (2) and (3) is generally called upon as the 

inverse propagator. As a matter of fact, given these equations it is possible to 

determine all inverse propagators when either ( )ω,,,~̂
hyx zkkp , ( )ω,,,~̂

hyxx zkkv , 

( )ω,,,~̂
hyxy zkkv , or ( )ω,,,~̂

hyxz zkkv  is known. All inverse propagators for given in- 

and output quantities are shown in a table in Figure 1. The inverse propagators are 

arced in grey cells with thick borders, and are multiplied with the hologram quantities 

shown above these cells to obtain the required acoustic quantities at a distance z  

corresponding to the cells shown to the left of the inverse propagators. 
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From a practical point of view, the k-space counterparts at hz  can only be obtained by 

measuring sound pressure or particle velocity at a discrete number of positions in a 

bounded plane. This is where the trouble starts. It is generally known that frequency 

analysis of a time signal of limited length, at a certain sampling rate requires proper 

anti-aliasing and anti-leakage filters in order to be useful. The same holds for PNAH 

in spatial versus wavenumber domain analysis. The spatial pre-processor block 

contains spatial anti-leakage and padding functions that render the data suitable for 2-

dimensional Fast Fourier Transform (2D FFT). Spatial sampling and aliasing, spatial 

pre-processing and low-pass filtering will be discussed below. 
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Figure 1: PNAH step-wise process (left); table with inverse propagators (right), depending on input 

(measured) data an inverse propagator can be chosen to calculate the required acoustical quantity.   

 

Spatial Sampling and Pre-processing 

Measurements with acoustic sensors in space can be explained as spatial sampling of 

acoustic properties. In [3] we have stated an inequality that shows how to apply a 

natural anti-aliasing filter: 
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sh
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D
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The possibility exists that aliasing occurs when this inequality is true. It tells us that 

under certain noise conditions the measurement distance can be too small given the 

chosen inter-sensor distance. 

Another problem is leakage. The finiteness of the hologram measurement grid 

introduces a certain wavenumber detail xk∆  for a given width of the total grid X  by 

Xkx /2π=∆  in [radm
-1

]. To reduce leakage, spatial windowing is to be applied 
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before transforming the data to k-space by means of a 2D FFT. A downside of 

windowing is the deterioration of a large part of the hologram data, which results in 

serious errors at the source. A way of avoiding these errors is a recently introduced 

technique called border-padding [4], which uses the pressures or particle velocities at 

the grid border and pads these outward. A carefully applied window minimizes the 

modification of the measured data. Although it adds non-physical data outside the 

hologram, the resulting effects are cut off at the end of the PNAH process, after 

inverse 2D FFT. 

Low-pass Filtering and L-curve 

A well-known issue with inverse problems is the blow-up of noise in the hologram. 

The noise at high wavenumbers should be suppressed, but first some insight in k-

space is required. 

From Figure 1 it follows that we need to determine zk  from the wavenumbers in both 

x- and y- direction, i.e. xk  and yk , and the acoustic wavenumber k  that follows from 

ω  and 0c . In k-space zk  is determined by 222

yxz kkkk −−±=  of which three types 

of solutions to this equation, with k  already known, can be found: 
 

022 =+ yx kk  a: plane wave in z-direction 

2220 kkk yx ≤+<  b: propagating waves; zk  is real  

222
kkk yx >+  c: evanescent waves; zk  is complex 

(4) 

 

The radiation circle lies exactly at 222

yx kkk +=  and is noted as rk , outside this circle 

waves are evanescent, whereas inside waves are propagating. Applying (2) to 

propagating waves (4a and b) result in a phase shift, evanescent waves (4c) are 

multiplied in k-space by an exponential power of increasing strength with increasing 

zk . 

From the above follows that noise at higher wavenumbers have a much higher 

influence on the result compared to noise within the radiation circle. Above a certain 

wavenumber, noise will dominate the inverse solution. However, information at high 

wavenumbers results in high spatial detail and thus the ability to identify small 

sources. 

A way to discriminate between high wavenumbers, polluted with noise and useful 

information at somewhat lower, evanescent and propagating waves is to apply a low-

pass, cosine tapered low-pass filter.  
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Figure 2: low-pass cosine tapered filter 
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Figure 3: PNAH L-curve by increasing cok  

 

The cosine tapering of the applied low-pass wavenumber filter is defined as 
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The cosine tapering width is determined by ratio R with respect to cok  is chosen. Both 

R and cok  are determined by an iterative process. Step-wise increasing cok  will 

eventually cause blow-up of the solution, on the other hand too much filtering will 

result in a low-detail result. If we plot the solution norm of the sound pressure, 
 

( ) ,,,,~̂~̂
22

ωsyxsf zkkpp =  (6) 

 

versus the residual norm of unfiltered hp̂~  and filtered hfp̂~  at the hologram plane, 

 

( ) ( ) ,,,,~̂),(,,,~̂~̂~̂
22

ωω hyxyxfhyxhfh zkkpkkHzkkppp −=−  (7) 

 

a L-curve as shown in Figure 3 results. Note that this process is valid for all inverse 

solutions of both sound pressure and particle velocity as given in Figure 1.  

“Sinc-effect” Caused by Low-pass Filter 

Ideally a low-pass filter passes all wavenumbers below cok  and halts all wavenumbers 

above. In very specific situations, like modal patterns in plates, a low-pass boxcar 

filter (infinitely steep) results in a good reconstruction, but in practise this type of 

filter will result in distortion of the result. To illustrate possible problems with this 

type of filter a 1D example is shown in Figure 4. The FFT of a point-like source 

contains energy over a wide k-space band, a sudden interruption of this pattern will 

result in a ringing or “sinc-effect” emerging from the original position of the point-

like source after inverse FFT. 
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Figure 4: a) point-like source and filtered result (dashed line); b) k-space of both signals  

PRACTICAL STUDY OF HARD DISK ACOUSTICS 

Measurement Setup 

The measured source is a Quantum Fireball LCT10 hard disk, mounted in a vertical 

position with the top cover facing forward, driven in idle mode. The three sensors are 

placed on a triple axis xyz-robot. The sensors are traversed to pre-defined 

measurement grid points which, combined, result into holograms of sound pressure 

and acoustic particle velocity and a surface velocity area scan by the laser.  

Sound pressure is measured by a Sonion 8002 that is generally used in hearing aids, 

the particle velocity is measured by a Microflown [6] placed in normal direction to 

the hard disk surface, and the laser vibrometer is a Polytec OFV 3000. The measured 

equidistant grid measures 21 rows by 17 columns with 1cm inter-sensor distance. The 

laser measurement measures only 13 by 9 points with 1cm spacing since it requires 

the reflecting area of the hard disk top cover. 

Quantitative and Qualitative Analysis of Results 

From a range of peak frequencies from the spectrum, a random frequency of 

f=1075Hz (k=19.7rad/m) is picked out to verify the results of determining the inverse 

solution by means of PNAH. Figure 5 shows the PNAH results for measured sound 

pressure and particle velocity in normal direction, both at 4 and 2cm distance from 

the hard disk surface. When comparing these results to the laser vibrometer 

measurements plotted on the right of Figure 5 we see clear similarity between the 

results. Especially PNAH inputs measured with microphone at 2cm and microflown 

at 2 and 4cm show a highly similar source pattern compared to the laser. Only PNAH 

input from microphones at 4cm performs considerably worse. 

Worth mentioning is the fact that the low-pass filter for PNAH with microflown 

measurements has a nearly two-times higher cok  than comparable microphone 

measurements, implicating that the particle velocity hologram contains less noise. 

A second interesting result is shown in Figure 6 at f=9669Hz (k=177rad/m), here a 

point-like source is present exactly on the axis of the disks. 
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vzh=2cm→vz=0cm,kco=162rad/m 

ph: hologram measured by 

microphone (top left and center) 

vzh: hologram measured by 

microflown (bottom left and 

center) 

 

vz laser 

∆x, ∆y=1cm, bicubic interp 

0

5

10

15

20

25

30

 
 

[dB ref 5·10
-8

 m/s] 

 

 

spatial sampling, all cases: 
∆x, ∆y=1cm 

Figure 5: Comparison of holography results at f=1075Hz (k=19.6rad/m), particle velocity at the source 

plane is compared to laser vibro measured surface velocity  
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Figure 6: Results of laser vibrometer compared to PNAH of microflown measurements at 2cm from 

the source at f=9669Hz (k=177rad/m), only spatial sampling (∆x, ∆y) and low-pass filters differ 
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Since this source is present at a relatively high frequency, the wavelength of about 

3.5cm is only sampled about 3 times per spatial period with x∆ =1cm, which is only 

just above the Nyquist rate. In between rk  and xkNyquist ∆= /π  lies cok  and this 

leaves hardly any k-space to apply a proper cosine tapering of the low-pass filter, 

resulting in a steep descent and ringing or “sinc-effect” as discussed above. At 1cm 

spatial sampling as shown in Figure 6b) the typical rings surrounding the source 

(marked by dashed circles) can be observed although some noisy behaviour is 

affecting clarity. According to our hypothesis a double spatial sampling rate should 

attenuate this effect, which clearly shows from the results at 0.5cm spatial sampling 

in Figure 6c). Also a better quantitative solution for the point source is now found. 

SUMMARY AND DISCUSSION 

Since PNAH solves the inverse problem in k-space it requires a rich k-space, yet 

discretizing the spatial domain by measuring a limited grid with sensors results in a 

less rich k-space. When pushing the limits of PNAH by measuring point-like sources 

at high frequencies, with low spatial sampling, errors will occur. This clearly shows 

the downside of using k-space for inverse problems. 

However, when the limits of PNAH are carefully avoided and proper post-processed 

techniques are applied, accurate results comparable to laser measurements are met. 

Also, particle velocity to particle velocity PNAH appears to show better results at 

larger hologram distances. Although a more thorough investigation should be carried 

out to verify this, since it only shows for this particular case. 
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