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Abstract

Planar Near-field Acoustic Holography (PNAH) is nowadays implemented at various
companies and institutes. At all times, seemingly correct acoustic images are created that are
treated accordingly. Caution has to be taken while interpreting these results, since
incompetent windowing and filter implementation leads to results that are far from the exact
solution. In order to avoid certain cases and probable misinterpretations, a number of recent
developments were made. A significant part of the most recent developments are discussed
shortly, followed by an in-depth comparison and verification of results, based on both sound
pressure and particle velocity measurements.

Various anti-leakage windowing techniques will be discussed and compared. Border-padding
is compared to classical windowing on larger grid sizes. Sound pressure and particle velocity
measurements on various distances on a stationary spinning hard disk are used to obtain
inverse solutions. Also, multiple distances are measured and compared to the obtained
inverse solutions. The flat top cover of the hard disk is scanned by a traversed laser vibration
system. These velocities of the cover are compared to inverse solutions of the particle
velocity at the source plane, where both sound pressure and particle velocity are used to
obtain these results. This makes it possible to quantitatively compare pressure to velocity and
velocity to velocity PNAH.

INTRODUCTION

The use of Fourier Transforms in acoustic imaging is very beneficial in terms of
processing speed and complexity, while it provides a very accurate solution to the
inverse solution of the wave equation. On the other hand, application of the Fourier
Transform requests a thorough knowledge of sampling theory and requirements for
proper transforms. In theory inverse acoustic problems are accurate and some even
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exact in continuous forms, but in practise we deal with finite measurement grids with
discrete spatial sampling, acoustic sensors and measurement systems which introduce
noise, distortion and certain boundaries. These practical factors should not be ignored
and play an important role for inverse acoustic methods to be successful.

In the following, a well-known technique developed in the 80’s of last century,
PNAH [1], is discussed, with some thoughts and tools to deal with more practical
aspects and possible errors. These will be illustrated by a practical case with particle
velocity and sound pressure measurements on an operational hard disk. The results
after solving the inverse problem are compared to laser vibrometer measurements.

THEORETICAL OUTLINE

Pressure and Velocity Based Planar Near-field Acoustic Holography

PNAH is characterized by the use of the spatial frequency domain, or k-space, in
order to obtain the inverse solution of the wave equation. In k-space a relatively easy
solution for the inverse problem of complex sound pressure or particle velocity at a
distance z, (hologram plane) to an arbitrary distance z can be obtained. The
boundary condition for the distance z is z =0, where the half-space z <0 is defined
as the source space. Outside the source space sound sources are not allowed. This
means we can calculate sound pressure and particle velocity at an infinite number of

planes parallel to the source plane z=z =0, in between z, and z . From [2] it
follows that

Pl k. 2,0)= plk, k2, @) ™, M

by using Euler’s equation the particle velocity in normal direction \"A/'z (kx,ky, zZ, a)) can
be determined from the sound pressure in k-space:
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The part after ﬁ(kx,ky,zh,a)) in both (2) and (3) is generally called upon as the
inverse propagator. As a matter of fact, given these equations it is possible to
determine all inverse propagators when either ﬁ(k k,,z,,® ), \";'X(kx,ky,zh,a)),

i:'y (k k,,z,,@ ) or \%Z (kx,ky,zh,a)) is known. All inverse propagators for given in-

and output quantities are shown in a table in Figure 1. The inverse propagators are
arced in grey cells with thick borders, and are multiplied with the hologram quantities
shown above these cells to obtain the required acoustic quantities at a distance z
corresponding to the cells shown to the left of the inverse propagators.
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From a practical point of view, the k-space counterparts at z, can only be obtained by

measuring sound pressure or particle velocity at a discrete number of positions in a
bounded plane. This is where the trouble starts. It is generally known that frequency
analysis of a time signal of limited length, at a certain sampling rate requires proper
anti-aliasing and anti-leakage filters in order to be useful. The same holds for PNAH
in spatial versus wavenumber domain analysis. The spatial pre-processor block
contains spatial anti-leakage and padding functions that render the data suitable for 2-
dimensional Fast Fourier Transform (2D FFT). Spatial sampling and aliasing, spatial
pre-processing and low-pass filtering will be discussed below.
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Figure 1: PNAH step-wise process (left); table with inverse propagators (right), depending on input
(measured) data an inverse propagator can be chosen to calculate the required acoustical quantity.

Spatial Sampling and Pre-processing

Measurements with acoustic sensors in space can be explained as spatial sampling of
acoustic properties. In [3] we have stated an inequality that shows how to apply a
natural anti-aliasing filter:

2
| 210 sk 3)
20(Zh - Z‘v) -

The possibility exists that aliasing occurs when this inequality is true. It tells us that
under certain noise conditions the measurement distance can be too small given the
chosen inter-sensor distance.

Another problem is leakage. The finiteness of the hologram measurement grid

introduces a certain wavenumber detail Ak_for a given width of the total grid X by
Ak =27x/X in [radm™]. To reduce leakage, spatial windowing is to be applied
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before transforming the data to k-space by means of a 2D FFT. A downside of
windowing is the deterioration of a large part of the hologram data, which results in
serious errors at the source. A way of avoiding these errors is a recently introduced
technique called border-padding [4], which uses the pressures or particle velocities at
the grid border and pads these outward. A carefully applied window minimizes the
modification of the measured data. Although it adds non-physical data outside the
hologram, the resulting effects are cut off at the end of the PNAH process, after
inverse 2D FFT.

Low-pass Filtering and L-curve

A well-known issue with inverse problems is the blow-up of noise in the hologram.
The noise at high wavenumbers should be suppressed, but first some insight in k-
space is required.

From Figure 1 it follows that we need to determine k, from the wavenumbers in both

x- and y- direction, i.e. k_and k . and the acoustic wavenumber k that follows from

@ and c,. In k-space k_ is determined by k, =%,/k* —k] —k; of which three types

of solutions to this equation, with k already known, can be found:

k f +k 3 =0 a: plane wave in z-direction
0< kf + k)z, <k®>  b: propagating waves; k. is real 4)
k?+ k)z; > k? c: evanescent waves; K, is complex

The radiation circle lies exactly at k> =k? +k; and is noted as k,, outside this circle

waves are evanescent, whereas inside waves are propagating. Applying (2) to
propagating waves (4a and b) result in a phase shift, evanescent waves (4c) are
multiplied in k-space by an exponential power of increasing strength with increasing
k..

From the above follows that noise at higher wavenumbers have a much higher
influence on the result compared to noise within the radiation circle. Above a certain
wavenumber, noise will dominate the inverse solution. However, information at high
wavenumbers results in high spatial detail and thus the ability to identify small
sources.

A way to discriminate between high wavenumbers, polluted with noise and useful
information at somewhat lower, evanescent and propagating waves is to apply a low-
pass, cosine tapered low-pass filter.
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Figure 2: low-pass cosine tapered filter Figure 3: PNAH L-curve by increasing k_,

The cosine tapering of the applied low-pass wavenumber filter is defined as

H, :l+lcos k—i(k“" _k‘“R)ﬁ ,
2 2 2k, R

for k., =k R)S kI +k7 < (k,, +k,R)

&)

The cosine tapering width is determined by ratio R with respect to k_, is chosen. Both
R and k,, are determined by an iterative process. Step-wise increasing k,, will

eventually cause blow-up of the solution, on the other hand too much filtering will
result in a low-detail result. If we plot the solution norm of the sound pressure,

by, =Pk, 20 ©)
versus the residual norm of unfiltered ﬁh and filtered ﬁhf at the hologram plane,
pth - ﬁhf ) = Hﬁ(kx’ky’ Zh’w)_ Hf (kx’k>-)§(kx’k)v’ Z,I,CUX ,’ (7)

a L-curve as shown in Figure 3 results. Note that this process is valid for all inverse
solutions of both sound pressure and particle velocity as given in Figure 1.

“Sinc-effect” Caused by Low-pass Filter

Ideally a low-pass filter passes all wavenumbers below k_, and halts all wavenumbers

above. In very specific situations, like modal patterns in plates, a low-pass boxcar
filter (infinitely steep) results in a good reconstruction, but in practise this type of
filter will result in distortion of the result. To illustrate possible problems with this
type of filter a 1D example is shown in Figure 4. The FFT of a point-like source
contains energy over a wide k-space band, a sudden interruption of this pattern will
result in a ringing or “sinc-effect” emerging from the original position of the point-
like source after inverse FFT.
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Figure 4: a) point-like source and filtered result (dashed line); b) k-space of both signals

PRACTICAL STUDY OF HARD DISK ACOUSTICS

Measurement Setup

The measured source is a Quantum Fireball LCT10 hard disk, mounted in a vertical
position with the top cover facing forward, driven in idle mode. The three sensors are
placed on a triple axis xyz-robot. The sensors are traversed to pre-defined
measurement grid points which, combined, result into holograms of sound pressure
and acoustic particle velocity and a surface velocity area scan by the laser.

Sound pressure is measured by a Sonion 8002 that is generally used in hearing aids,
the particle velocity is measured by a Microflown [6] placed in normal direction to
the hard disk surface, and the laser vibrometer is a Polytec OFV 3000. The measured
equidistant grid measures 21 rows by 17 columns with 1cm inter-sensor distance. The
laser measurement measures only 13 by 9 points with 1cm spacing since it requires
the reflecting area of the hard disk top cover.

Quantitative and Qualitative Analysis of Results

From a range of peak frequencies from the spectrum, a random frequency of
f=1075Hz (k=19.7rad/m) is picked out to verify the results of determining the inverse
solution by means of PNAH. Figure 5 shows the PNAH results for measured sound
pressure and particle velocity in normal direction, both at 4 and 2cm distance from
the hard disk surface. When comparing these results to the laser vibrometer
measurements plotted on the right of Figure 5 we see clear similarity between the
results. Especially PNAH inputs measured with microphone at 2cm and microflown
at 2 and 4cm show a highly similar source pattern compared to the laser. Only PNAH
input from microphones at 4cm performs considerably worse.

Worth mentioning is the fact that the low-pass filter for PNAH with microflown

measurements has a nearly two-times higher k_, than comparable microphone
measurements, implicating that the particle velocity hologram contains less noise.

A second interesting result is shown in Figure 6 at f=9669Hz (k=177rad/m), here a
point-like source is present exactly on the axis of the disks.
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Figure 5: Comparison of holography results at f=1075Hz (k=19.6rad/m), particle velocity at the source
plane is compared to laser vibro measured surface velocity
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Figure 6: Results of laser vibrometer compared to PNAH of microflown measurements at 2cm from
the source at f=9669Hz (k=177rad/m), only spatial sampling (Ax, Ay) and low-pass filters differ
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Since this source is present at a relatively high frequency, the wavelength of about
3.5cm is only sampled about 3 times per spatial period with Ax=1cm, which is only
just above the Nyquist rate. In between k, and k& =7x/Ax lies k. and this

leaves hardly any k-space to apply a proper cosine tapering of the low-pass filter,
resulting in a steep descent and ringing or “sinc-effect” as discussed above. At lcm
spatial sampling as shown in Figure 6b) the typical rings surrounding the source
(marked by dashed circles) can be observed although some noisy behaviour is
affecting clarity. According to our hypothesis a double spatial sampling rate should
attenuate this effect, which clearly shows from the results at 0.5cm spatial sampling
in Figure 6¢). Also a better quantitative solution for the point source is now found.

Nyquist

SUMMARY AND DISCUSSION

Since PNAH solves the inverse problem in k-space it requires a rich k-space, yet
discretizing the spatial domain by measuring a limited grid with sensors results in a
less rich k-space. When pushing the limits of PNAH by measuring point-like sources
at high frequencies, with low spatial sampling, errors will occur. This clearly shows
the downside of using k-space for inverse problems.

However, when the limits of PNAH are carefully avoided and proper post-processed
techniques are applied, accurate results comparable to laser measurements are met.
Also, particle velocity to particle velocity PNAH appears to show better results at
larger hologram distances. Although a more thorough investigation should be carried
out to verify this, since it only shows for this particular case.
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