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Abstract
In the paper a new approach to theon-line identification of electro-acoustic plants models
for active noise control systems, based on the higher-order spectra aided by signal averaging
is presented. Two solutions are proposed: first employing the higher-order spectra only and
second employing the both higher and second-order spectra. Proposed identification meth-
ods allow to reduce an influence of disturbances on identification results and obtain strongly
consistent estimates in contrast to classical second-order identification algorithms. Signal av-
eraging enhances signal-to-noise ratio without deteriorating noise attenuation. Results ob-
tained with the proposed identification methods, computed on the basis of data acquired in
the laboratory experiments, are provided and compared with results of classical second-order
identification methods.

INTRODUCTION

Adaptive active noise control (ANC) systems are parameterized with the models of the sec-
ondary and feedback paths. If these paths are time-varying, the models have to be updated
during ANC system operation [1]. Several problems like inherent feedback loops, low signal-
to-noise ratio, and correlation of the identified path input and disturbance makeon-line iden-
tification very difficult [2], [3]. In this case classical identification algorithms using second-
order moments and spectra often give biased and inconsistent estimates. The proposed solu-
tions employ higher-order spectra (HOS) or together higher- and second-order spectra aided
by signal averaging. HOS contain some additional information about processed signals that
is not available to extract using second-order spectrum (SOS) i.e. power spectral density.
HOS are identically zero for some processes, including Gaussian processes, what is useful
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property from identification point of view. So if the disturbance signal is Gaussian, it theoret-
ically doesn’t influence the identification results, and in practice this influence is significantly
reduced [8], [9], [13]. The proposed approach requires a special, non-Gaussian, excitation
signal. In the laboratory experiments the excitation sequence is repeated several times and the
measured data are averaged. Averaging enhances signal-to-noise ratio without deteriorating
noise attenuation, and improves Gaussian properties of the disturbance. This allows to obtain
strongly consistent estimates [13]. The results of real-world experiments show the effective-
ness of proposed approach to electro-acoustic plants models identification in comparison to
classical second-order identification methods.

ANC SYSTEM AND ON-LINE IDENTIFICATION PROBLEM

A feedforward active noise control system of interest, described in details in [1], [2], [3],
creates a local spatial zone of quiet surrounding an error microphone in an enclosure. The
laboratory room plan and block diagram of the ANC system is shown inFigure 1.
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Figure 1:Laboratory room plan (left) and ANC system block diagram (right).

The ANC laboratory enclosure is placed at the Institute of Automatic Control, Silesian Uni-
versity of Technology, Gliwice, Poland [5]. The primary pathrepresents the acoustic space
between the source of an undesirable noise (disturbance) and the error microphone, and the
secondary pathcorresponds with all electro-acoustic elements between the output of a control
algorithm and the error microphone. The control signaly(i), being a result of filtration of the
disturbance (measured by the reference microphone, placed near the primary source) through
a digital filterW (z−1), is used to attenuate the disturbance. The coefficients ofW (z−1) are
updated using adaptation algorithm that minimizes the mean square value of the signalε(i)
from the error microphone. The reference signalx(i) has to be filtered through the secondary
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path model̂S(z−1) before it is used in the adaptation algorithm. Since the sound generated by
the secondary source affects also the reference microphone, there exists anacoustic feedback
path, composed analogously to the secondary path. This influence may be compensated by
the suitable length of filterW (z−1). Filter Ŝ(z−1) has to be identifiedoff-line (before acti-
vating the ANC system), and in many cases it should be also updatedon-line (while ANC
system is operating). The need ofon-line identification follows from possible changes of ge-
ometry (e.g. movements of microphones, loud-speakers, people and objects) and conditions
(e.g. temperature, humidity) in the enclosure. There are three main difficulties connected with
on-line identification in the ANC system:

• It is a closed-loop system identification problem and it implies that the input and output
of the identified path are correlated. Moreover, if the system works well, the identified
ANC plant is not excited sufficiently. Therefore the external excitationu(i) has to be
introduced into the system and added to the control signal.

• The disturbanced(i) affects simultaneously the input and output of the ANC plant.
So there exists a ”hidden variable” that influences both control signaly(i) and error
signalε(i). To avoid this undesirable influence a HOS-based identification method is
proposed.

• The higher the ratio of the external excitation to the disturbance variances is, the better
the identification results are. On the other hand, the external excitation reduces the noise
attenuation, so increasing its variance is against the purpose of ANC system. Therefore
the signal averaging procedure is proposed.

IDENTIFICATION METHODS

Data Acquisition - Signal Averaging

The signal averaging procedure is well known in system identification [4], [10]. In this proce-
dure the periodic excitation sequenceu(i), i = 1, 2, . . . , N ∗M , is composed ofM repetitions
of N -samples long primitive sequenceu1(i), i = 1, 2, . . . , N . Acquired secondary path input
datay(i) data are divided intoM blocks and averaged according to the equation

y(i) =
1
M

M−1∑

m=0

y(i + m ∗N). (1)

Averaged output signalε(i) is calculated in the same way. The secondary path model is iden-
tified on the basis of the averaged data. This technique let us to improve signal-to-noise ratio
without deterioration of the noise attenuation, because the variance of averaged disturbances
is reduced proportionally to the number of repetitionsM . Another useful property of aver-
aging reveals when identification based on HOS is applied. According to theCentral Limit
Theorem, the averaged disturbance asymptotically approaches the Gaussian distribution [11],
[12]. So the averaging procedure let us successfully use HOS-based methods, even if the
disturbance does not satisfy the Gaussianity assumption.
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Second-Order Estimator

The most known nonparametric identification method is the classical spectral analysis, em-
ploying second-order spectra to obtain the frequency response estimatorŜSO(jΩn)

ŜSO(jΩn) =
Φyε(jΩn)
Φyy(Ωn)

, (2)

for frequenciesΩ = 2π/N , n = 0, 1, . . . , N − 1 [7]. The estimates of input power spec-
tral densityΦyy(Ωn) and input-output cross-power spectral densityΦyε(jΩn) in the direct
approach (periodogram) can be calculated as a multiplication of the properN-point discrete
Fourier transforms ofy(i), andε(i)

Y (jΩn) =
N∑

i=0

y(i)e−jΩni, E(jΩn) =
N∑

i=0

ε(i)e−jΩni, (3)

according to the equations

Φyy(Ωn) =
1
N

Y (jΩn)Y ∗(jΩn), Φyε(jΩn) =
1
N

Y (jΩn)E∗(jΩn), (4)

where superscript * denotes complex conjugation.

Higher-Order Estimator

The proposed identification method is based on direct estimators of integrated bispectra (IB)
[9], [13]. In the IB method the frequency response estimatorŜHO(jΩn) is a ratio of integrated
cross-bispectrum of input and output signals to the integrated bispectrum of input signal,
according to the equation

ŜHO(jΩn) =
(

IByε(jΩn)
IByy(jΩn)

)∗
, (5)

where

IByy(jΩn) =
1
N

R2y(jΩn)Y ∗(jΩn), IByε(jΩn) =
1
N

R2y(jΩn)E∗(jΩn), (6)

and the properN-point discrete Fourier transforms ofy(i), ε(i) andr2y(i)

Y (jΩn) =
N∑

i=0

y(i)e−jΩni, E(jΩn) =
N∑

i=0

ε(i)e−jΩni, R2y(jΩn) =
N∑

i=0

r2y(i)e−jΩni. (7)
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Signalr2y(i) is defined as

r2y(i) = y2(i)− 1
N

N∑

k=1

y2(k). (8)

The IB estimates obtained in the direct way should be smoothed in the frequency domain, oth-
erwise we receive the empirical transfer function estimator [7], and the identification method
reduces to second-order.

Mixed-Order Estimator

Unlike the classical second-order identification methods, the IB-based method allows to ob-
tain strongly consistent estimates in the presence of disturbance [13]. On the other hand the
variance of the classical second-order estimates, outside the dominant frequency band of dis-
turbance, is usually smaller than the variance of the higher-order ones [6]. A new solution is
proposed that join the unbias of higher-order and low variance of second-order estimates. In
this solution the frequency response estimatorŜMO(jΩn) is a linear combination of classical
and higher-order estimators, weighted by the coherence function and one minus coherence
function, respectively

ŜMO(jΩn) = κ2(Ωn)ŜSO(jΩn) + (1− κ2(Ωn))ŜHO(jΩn), (9)

whereκ2(Ωn) is the coherence function ofy(i) andε(i)

κ2(Ωn) =
|Φyε(jΩn)|2

Φyy(Ωn)Φεε(Ωn)
. (10)

The frequency response estimate can be easily transformed to parametric model using e.g.
the least squares approximation of frequency response for fixed model structure described in
[13].

LABORATORY EXPERIMENTS

During the laboratory experiments, the ANC system was working with the sampling fre-
quency 1 kHz. The attenuation frequency band was limited from below up to 20 Hz (by
dynamical properties of the control loud-speaker) and from above down to 350 Hz (by anti-
aliasing and forming analog filters). The enclosure was disturbed by a computer-simulated
colored Gaussian noise or a real pump noise. Both disturbances have similar dominant fre-
quency band, see power spectral densities inFigure 2.
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Figure 2:Power spectral density of colored Gaussian (left) and pump (right) noises.
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Figure 3: Frequency response magnitude and frequency response phase error of obtained
estimates for colored Gaussian,M = 5 (left) and pump,M = 20 (right) disturbances.

Using each of the discussed identification methods a parametric model (a FIR filter with
100 coefficients) of the secondary path was found. An exemplary identification results are
shown inFigure 3for different number of repetitionsM , what follows from different powers
of excitation signal (one-sided exponential white noise) in these experiments. Result of an
additionaloff-lineexperiment in the undisturbed ANC system is treated as a pattern to which
on-line identification results are compared. In the figure the phase is illustrated as the phase
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error, equal to the obtained frequency response phase minus the phase of the pattern. The
phase errors should be in the range(−π/2, π/2) to assure stability of the ANC system. We
can observe that classical second-order estimates give greater errors than higher-order and
mixed-order what influences satisfaction of the phase error condition. However, outside the
dominant frequency band of disturbances, the second-order estimates are a little better than
higher-order, which defect of higher-order estimator can be eliminated by using of mixed-
order estimator.
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Figure 4:Mean square error of estimates in function of number of repetitions M in frequency
bands from 40 to 350 Hz (left) and from 70 to 110 Hz (right)

Mean square error (MSE), representing a mean (square) distance between the obtained es-
timates and the pattern in a fixed frequency band, was calculated for two frequency bands:
from 40 to 350 Hz and from 70 to 110 Hz. The first frequency band corresponds to the whole
attenuation band, the second frequency band corresponds to the dominant frequency band of
disturbances. Averaged MSE of 10 Monte Carlo experiments is shown inFigure 4. We can
observe that in the first frequency band results of all methods are comparable, but in the sec-
ond frequency band higher-order and mixed-order methods produce lower MSE than classical
second-order methods.

CONCLUSIONS

In the paper two identification methods based on the higher-order spectra and signal averaging
were proposed to solve a problem of theon-line identification of electro-acoustic plant mod-
els for active noise control systems. The proposed methods allow to reduce an influence of
disturbances on identification results what was illustrated by laboratory experiments results.
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