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Abstract 
Artificial neural network models for predicting speech intelligibility scores and security 
thresholds have been developed in a previous work [Xu et al., “An artificial neural network 
approach for predicting architectural speech security,” Journal of the Acoustical Society of 
America, 117 (4), pp 1709-1712, 2005]. The present work uses an application example to 
show in detail how these models can be embedded into a spreadsheet application and 
implemented in the design stage. Using the same example, the present work also investigates 
how the speech intelligibility scores and security thresholds vary as a result of using different 
constructions for the common partition between the speech sound source room and speech 
sound receiving room. Results of the investigation show that, when the speech sound level is 
68 dB(A) in the speech sound source room and the background noise level is 39 dB(A) in the 
speech sound receiving room, for a typical setup of private offices, 30% of overhead words 
would be intelligible when the construction of the common partition has an STC rating of 
around 45; only a very small percentage of the overheard words would be intelligible when 
the STC rating of the common partition is increased to 50; all speech sounds from the speech 
sound source room would be completely inaudible when the STC rating of the common 
partition is increased to 60. 

INTRODUCTION 

Speech intelligibility and privacy have been related to signal-to-noise (S/N) type 
measures, where the signal is the transmitted speech sound in the adjacent space and 
the noise is the background noise in the adjacent space. Cavanaugh et al. [1] 
presented a report on occupants’ impressions of privacy in buildings and stated that 
the most critical 10% of the subjects began to feel a lack of privacy when the 
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Articulation Index (AI) [2] reached 0.05. In their work, the assessment of speech 
privacy was based on how private the subjects felt a situation was. The actual fraction 
of the speech, which the subjects could understand was, however, not measured. On 
the basis of the data in Cavanaugh et al., Young [3] revised the computational 
procedure and proposed a measure derivable from A-weighted levels of speech and 
noise and single number ratings of partitions’ transmission losses. Young’s method is 
easy to calculate and has become accepted practice [4] but it is no more accurate than 
the original method in Cavanaugh et al. and not supported by additional subjective 
tests. 

Gover and Bradley [5] carried out new subjective tests to evaluate and develop 
measures for objectively assessing speech intelligibility and security. In their 
subjective tests, four objective speech intelligibility and security results were 
obtained: (a) the speech intelligibility score, namely the percentage of words correctly 
identified by each listener; (b) the intelligibility threshold, namely the percentage of 
listeners able to correctly identify at least one word; (c) the cadence threshold, namely 
the percentage of listeners able to detect the cadence of the speech; and (d) the 
audibility threshold, namely the percentage of listeners able to hear the presence of 
the speech. Their evaluation showed that AI or its more recent replacement the 
Speech Intelligibility Index (SII) [6] can be related to the intelligibility score when 
AI≥0 or SII≥0 but cannot be used to describe conditions for high levels of speech 
security which would correspond to acoustical conditions below AI=0 or SII=0, 
where AI or SII is not defined. The difference in A-weighted levels is not limited in 
this way but it is much less accurately related to intelligibility scores. Consequently, 
they developed measures such as SII-weighted S/N ratio and S/N loudness ratio [5] to 
more accurately predict the speech intelligibility and security. 

The current method for predicting speech intelligibility, privacy and security 
first requires the development of a measure and then requires the measure to be 
related to subjective scores using a transfer function [2, 5-6]. To avoid this two-step 
process, an artificial neural network (ANN) approach has been applied by Xu et al. 
[7] to directly predict the subjective speech intelligibility score and security 
thresholds using the S/N ratio information. The ANNs were trained and developed on 
the basis of the subjective test results in Gover and Bradley [6]. Compared with the 
work of Gover and Bradley [6] that used one-third-octave band S/N ratios, the ANN 
approach used only the octave-band (250 Hz to 8000 Hz) S/N ratios and performed 
comparably for the predictions of the intelligibility score, the intelligibility threshold 
and the cadence threshold, and better for the prediction of the audibility threshold.  

The present work uses an application example to show in detail how the ANN 
models developed in Xu et al. [7] can be embedded into Microsoft® Excel [8] 
spreadsheets and implemented to predict speech intelligibility scores and security 
thresholds in the design stage. Using the same example, the present work also 
investigates how the speech intelligibility scores and security thresholds vary as a 
result of using different constructions for the common partition between the speech 
sound source room and speech sound receiving room. 
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AN APPLICATION EXAMPLE 

   Receiving Room
(LR, AR, RTR, LR, VR)

ISR, ITHR, CTHR, ATHR

Source Room
        (LS)

TL
 S

 
Figure 1 – Transmission of speech sound between two rooms (private offices) 

 
As shown in Figure 1, the present application example is to consider the speech 
intelligibility and security conditions between two adjacent private offices. LS is the 
average speech sound level in the source room; LR is the average transmitted speech 
sound level in the receiving room; LBG is the background noise level in the receiving 
room; AR is the total sound absorption in the receiving room; RTR is the reverberation 
time in the receiving room; VR is the volume of the receiving room; TL is the 
transmission loss of the common partition; and S is the area of the common partition. 
Given the above situation, ISR, ITHR, CTHR and ATHR are respectively the resulted 
intelligibility score, intelligibility threshold, cadence threshold and audibility 
threshold in the receiving room. 

Predicting the Transmitted Speech Sound Level 

Assuming all the speech sound in the source room passes through the common 
partition, the transmitted speech sound in the receiving room can be calculated using 
the following equation [9]: 
 

RR ASTLLsL log10log10 −+−= .                                       (1) 
 

The above equation ignores the direct sound effect in the rooms and assumes 
that both rooms are diffusive. In a diffusive room, AR can be derived from Sabine’s 
reverberation time equation as follows: 

 

R

R
R RT

VA 161.0
= .                                                          (2) 

 
Substitute Equation (2) to Equation (1), Equation (1) can be transformed to 
 

8log10log10log10 ++−+−= RRR RTVSTLLsL .                     (3) 
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In Gover and Bradley [6], a male speech spectrum was used. This spectrum 
corresponded to an effort somewhere between “raised” and “loud” [10] and was most 
easily identified by the subjects in their speech intelligibility tests. Figure 2 shows this 
speech spectrum in octave bands between 250 Hz and 8000 Hz, which was converted 
from the one-third-octave band spectrum provided in their work. The converted 
octave-band speech spectrum, corresponding to a broadband 68 dBA, is used in the 
present example. 
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Figure 2 – Speech sound spectrum in the source room and background noise spectrum 

in the receiving room 
 

Table 1 shows the different constructions of the common partition investigated 
in the present example. These constructions are typically seen in office buildings. 
Figure 3 plots their measured TLs [11-12]. 

 
Table 1 Different constructions of the common partition investigated 

ID Details of the construction STCa 

C1 3 mm float glass  30 [11] 
C2 6.38 mm laminated glass  35 [11] 
C3 64 mm steel studs, 16 mm plasterboard (12.5 kg/m2) each side 39 [12] 
C4 64 mm steel studs, 16 mm plasterboard (12.5 kg/m2) each side, 50 mm glasswool (10.8 kg/m3) in the stud cavity 44 [12] 

C5 64 mm steel studs, 2 layers of 13 mm plasterboard (10.5 kg/m2) each side, 50 mm glasswool (10.8 kg/m3) in the 
stud cavity 50 [12] 

C6 
Decoupled walls: 1 layer of 13 mm plasterboard (10.5 kg/m2), 64 mm steel studs, 20 mm air gap, 64 mm steel 
studs, 1 layer of 13 mm plasterboard (10.5 kg/m2), 50mm glasswool (10.8kg/m3) in one of the stud cavities, no 
connections between wall leaves 

54 [12] 

C7 
Decoupled walls: 2 layers of 13 mm plasterboard (10.5 kg/m2), 64 mm steel studs, 20 mm air gap, 64 mm steel 
studs, 2 layers of 13 mm plasterboard (10.5 kg/m2), 50 mm glasswool (10.8kg/m3) in one of the stud cavity, no 
connections between wall leaves 

60 [12] 

aSTC = sound transmission class 
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Figure 3 – Measured TLs [11-12] of constructions listed in Table 1.  
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In the present example, the dimensions of the receiving room are assumed to be 
2.7 m (high) × 3.2 m (wide) × 4 m (long). Therefore, S = 2.7 × 3.2 = 8.64 m2 and VR 
= 2.7 × 3.2 × 4 = 34.56 m3.  

Columns A to G in Table 2 show how the transmitted speech sound level can be 
calculated using the spreadsheet. The TL shown in Table 2 is of construction C4 and 
the RTR shown in Table 2 is of a private office with primarily hard finishes. The use 
of IF function in Column G of Table 2 is to ensure that the values of transmitted 
speech sound level in the receiving room is not less than 0. 

Calculating S/N Ratios in the Receiving Room 

Columns G to I in Table 2 show how S/N ratio in the receiving room can be 
calculated using the Excel spreadsheet. The background noise level in the receiving 
room, LBG, is from the mechanical air conditioning system serving the room. The 
sound spectrum of LBG used in the present example is plotted in Figure 2. The use of 
IF function in Column I of Table 2 is to ensure that the values of S/N ratios are within 
the ranges of input variables of ANNs developed by Xu et al. [7]. 
 

Table 2 Predict the transmitted speech sound level using the Excel spreadsheet 
 A B C D E F G H I 

1 Frequency 
(Hz) 

LS  
(dB) 

TL 
(dB) 

S 
(m2) 

VR 
(m3) 

RTR 
(s) 

LR (dB) LBG 
(dB) 

S/N Ratios (dB) 

2 250 67.6 36 8.64 34.56 0.66 

=IF(B2-C2+10*LOG(D2)-
10*LOG(E2)+10*LOG(F2)+8<0,0,B2-
C2+10*LOG(D2)-
10*LOG(E2)+10*LOG(F2)+8) 

39.5 

=IF(G2-H2<-34.8,-
34.8,(IF(G2-
H2>6.2,6.2,G2-
H2))) 

3 500 67.8 45 8.64 34.56 0.60 

=IF(B3-C3+10*LOG(D3)-
10*LOG(E3)+10*LOG(F3)+8<0,0,B3-
C3+10*LOG(D3)-
10*LOG(E3)+10*LOG(F3)+8) 

38.7 

=IF(G3-H3<-30.2,-
30.2,(IF(G3-
H3>13.1,13.1,G3-
H3))) 

4 1000 60.9 50 8.64 34.56 0.60 

=IF(B4-C4+10*LOG(D4)-
10*LOG(E4)+10*LOG(F4)+8<0,0,B4-
C4+10*LOG(D4)-
10*LOG(E4)+10*LOG(F4)+8) 

30.8 

=IF(G4-H4<-32.7,-
32.7,(IF(G4-
H4>1.3,1.3,G4-
H4))) 

5 2000 58.7 40 8.64 34.56 0.54 

=IF(B5-C5+10*LOG(D5)-
10*LOG(E5)+10*LOG(F5)+8<0,0,B5-
C5+10*LOG(D5)-
10*LOG(E5)+10*LOG(F5)+8) 

25.6 

=IF(G5-H5<-28.2,-
28.2,(IF(G5-
H5>7.1,7.1,G5-
H5))) 

6 4000 55.4 49 8.64 34.56 0.42 

=IF(B6-C6+10*LOG(D6)-
10*LOG(E6)+10*LOG(F6)+8<0,0,B6-
C6+10*LOG(D6)-
10*LOG(E6)+10*LOG(F6)+8) 

18.7 

=IF(G6-H6<-27.4,-
27.4,(IF(G6-
H6>10,10,G6-
H6))) 

7 8000 49.9 49 8.64 34.56 0.30 

=IF(B7-C7+10*LOG(D7)-
10*LOG(E7)+10*LOG(F7)+8<0,0,B7-
C7+10*LOG(D7)-
10*LOG(E7)+10*LOG(F7)+8) 

11.6 

=IF(G7-H7<-23.2,-
23.2,(IF(G7-
H7>8.7,8.7,G7-
H7))) 

Predicting Speech Intelligibility Scores and Security Thresholds 

Since the architecture of the ANN models, the range of each input variable and 
specifics of the ANN models developed by Xu et al. have been provided in their work 
[7], they are not repeated in the present work. Table 3 shows how the specifics of the 
ANN model, developed by Xu et al. [7], for predicting speech intelligibility scores 
can be embedded into the Excel spreadsheet to make predictions without the use of 
special ANN softwares. The procedure can be described by the following three steps. 
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1) Pre-process the input data, which involves the multiplication by the corresponding 
scale factors, followed by the addition of the corresponding shift factors. 

2) Multiply the pre-processed inputs by the corresponding weights to the hidden 
neurons, sum the weighted inputs and subtract the corresponding bias to the 
hidden neurons, and pass the resulting value through a non-linear activation 
function. The non-linear activation function applied in Xu et al. [7] was the 
sigmoidal logistic function (1 / (1 + e-x), where x is the resulting value). 

3) Multiply the output values of Step 2 by the corresponding weights to the output 
neuron, sum the weighted outputs and subtract the corresponding bias to the 
output neuron to produce a single output value (in this case, predicted speech 
intelligibility scores). In Table 3, the output value of the ANN is rounded to the 
nearest 5%. 

The same procedure can be followed to embed the specifics of the ANN 
models, developed by Xu et al. [7], for predicting speech security thresholds into 
spreadsheets. Other examples of embedding ANN models into spreadsheets can be 
found in Nannariello et al. [13] and Xu et al. [14]. 

 
Table 3 Predict speech intelligibility scores using the Excel spreadsheet 

Step 1 
 A B C 

8 Input pre-processing scale factor [7] Input pre-processing shift factor [7] Pre-processed inputs 
9 0.0244 0.8478 =I2*A9+B9 
10 0.0231 0.6984 =I3*A10+B10 
11 0.0295 0.9629 =I4*A11+B11 
12 0.0284 0.7990 =I5*A12+B12 
13 0.0268 0.7333 =I6*A13+B13 
14 0.0314 0.7276 =I7*A14+B14 

 
Step 2 

 A B C D E 

15 Weights to hidden 
neuron 1 (h1#01) [7] 

Multiply weights to pre-
processed inputs Sum weighted inputs Subtract the 

bias 
Passing the biased summation 
through the activation function  

16 1.1366 =C9*A16 =SUM(B16:B21) =C16-A23 =1/(1+EXP(-D16)) 
17 10.5723 =C10*A17    
18 -0.2854 =C11*A18    
19 8.0602 =C12*A19    
20 2.0982 =C13*A20    
21 1.1966 =C14*A21    
22 Bias to h1#01[7]     
23 11.5184     

24 Weights to hidden 
neuron 2 (h1#02) [7] 

Multiply weights to pre-
processed inputs Sum weighted inputs Subtract the 

bias 
Passing the biased summation 
through the activation function  

25 1.4757 =C9*A25 =SUM(B25:B30) =C25-A32 =1/(1+EXP(-D25)) 
26 2.7610 =C10*A26    
27 4.9302 =C11*A27    
28 1.3246 =C12*A28    
29 2.0439 =C13*A29    
30 -1.0482 =C14*A30    
31 Bias to h1#02 [7]     
32 3.4952     

33 Weights to hidden 
neuron 3 (h1#03) [7] 

Multiply weights to pre-
processed inputs Sum weighted inputs Subtract the 

bias 
Passing the biased summation 
through the activation function 

34 0.7391 =C9*A34 =SUM(B34:B39) =C34-A41 =1/(1+EXP(-D34)) 
35 4.5765 =C10*A35    
36 7.2539 =C11*A36    
37 1.8921 =C12*A37    
38 -0.0099 =C13*A38    
39 -2.9519 =C14*A39    
40 Bias to h1#03 [7]     
41 2.4780     
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Step 3 
 A B C D E 

42 
Weights to 

output Neuron 
[7] 

Multiply weights to 
the resulting values 

of Step 2 

Sum weighted 
outputs 

Subtract 
the bias Output (predicted speech intelligibility scores) 

43 0.5257 =E16*A43 =B43+B44+B45 =C43-A47 =MROUND(IF(D43<0,0,IF(D43>1,1,D43)),0.05) 
44 1.5923 =E25*A44    
45 -1.1333 =E34*A45    

46 Bias to output 
neuron [7]     

47 0.0086     

Effects of Different Constructions 

Table 4 shows the predicted speech intelligibility scores and security thresholds as a 
result of using different constructions of the common partition listed in Table 1. The 
predicted ISRs are slightly conflicting with the predicted ITHRs when the common 
partition is C5, C6 or C7 because when one of them is 0% the other should also be 
0%. This conflict is mainly due to the prediction errors related to the ANN models. In 
any of the situations, however, both values show very low speech intelligibility will 
result when the common partition is C5, C6 or C7.   
 
Table 4 Predicted speech intelligibility scores and security thresholds as a result of using 
different constructions of the common partition listed in Table 1 
Constructions Intelligibility score ISR 

(%) 
Intelligibility threshold ITHR 

(%) 
Cadence threshold CTHR 

(%) 
Audibility threshold ATHR (%) 

C1 (STC 30) 95 100 100 100 
C2 (STC 35) 95 100 100 100 
C3 (STC 39) 75 95 100 100 
C4 (STC 44) 30 70 100 100 
C5 (STC 50) 0 10 50 75 
C6 (STC 54) 5 0 5 10 
C7 (STC 60) 5 0 0 0 

DISCUSSIONS AND CONCLUSIONS 

The present work used an application example to show in detail how the ANNs for 
predicting speech intelligibility scores and security thresholds developed in a previous 
work [7] can be embedded into a spreadsheet application and implemented in the 
design stage. Using the same example, the effectiveness of different constructions of 
the common partition for the speech sound isolation between the source room and the 
receiving room were predicted. The prediction results indicated that 1) when the 
construction of the common partition had an STC rating of no more than 40, in the 
speech sound receiving room most of overheard words would be intelligible and 
consequently the speech privacy between the two offices would be very poor; 2) 
when the construction of the common partition had an STC rating of around 45, in the 
speech sound receiving room  30% of overhead words would be intelligible; 3) when 
the STC rating of the common partition was increased to 50, in the speech sound 
receiving room only a very small percentage or none of the overheard words would 
be intelligible; 4) when the STC rating of the common partition was between 50 and 
59, in the speech sound receiving room it would still be possible to recognise the 
cadence or rhythm of the speech; and 5) when the STC rating of the common 
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partition was over 60, the speech between the two room would be inaudible and an 
excellent speech security could be achieved.  

The present example considered a typical room setup of private offices. The 
speech sound in the source room had a spectrum equivalent to 68 dB(A) and the 
background noise level in the receiving room had a spectrum equivalent to 39 dB(A). 
For different room setups, source room speech sound levels and receiving room 
background noise levels these partitions may lead to different degrees of speech 
intelligibility or security.  
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