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Abstract
This paper presents a method based on quadratic variables, some of which keep a strong en-
ergy meaning, even when time- and space-averaged. If the damping is assumed to be slight,
the governing equation of this method is similar with equations of the Vibrational Conductiv-
ity Approach (VCA).
The main point of this work is the presentation of appropriate boundary conditions for
space-averaged quadratic variables. The numerical example given proves the space-averaged
quadratic method is well suited to model global energy transfers along one-dimensional
dissipative structures in the middle frequency range. The simplification of space-averaged
quadratic fields reduces discretization requirements, but the lack of spatial information of
SEA results is overcome.

INTRODUCTION

Vibration and noise predictive tools are necessary to define noise paths and implement
efficient control strategies. Unfortunately the prediction of the vibration behavior of struc-
tures consisting of numerous connected elements cannot be correctly done throughout the
entire audible frequency range by a single predictive tool. Element Methods (FEM and
BEM) are effective only for low frequencies since in the high frequency range the short
wavelength of the system deformation can require the use of an excessive number of degrees
of freedom and can also make the system very sensitive to manufacturing imperfections [1].
Statistical Energy Analysis (SEA) can give a space and frequency determination of quadratic
vibro-acoustical response to the dynamic problem at high frequencies for complex buil-up
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systems, but the resulting information only consists in averaged quantities describing the
behavior on a population of modes of the subsystems. Moreover SEA relies on an energy
diffusion model which is not always suitable for multi-mode wave fields with low modal
density.
The modern approach of high frequencies problems is based on the energy flow. Its motiva-
tion is to overcome some limitations of SEA, especially the lack of spatial information of its
results. With this approach, the high frequency acoustic energy flow or the structural intensity
of independent plane waves is assumed to be proportional to the gradient of energy density.
This leads to a partial differential equation of the heat conduction type, which is the basis of
the Vibrational Conductivity Approach (VCA) [2]. Although the basic VCA equation was
applied with success to one-dimensional structures [3], the justification of the VCA is more
difficult and its validity is not satisfying for multi-dimensional problems [4].
This present work focuses on the concept of space-averaged quadratic variables as other
works did before [5, 6]. Here quadratic variables averages are over time and space for steady
state harmonic waves.

SPACE-AVERAGED QUADRATIC VARIABLES

General Form of the Displacement Field and Energy Quantities

Systems considered in this work are one-dimensional systems in which only longitudinal
waves propagate. So the method presented here is applicable to acoustics by using the speed
of sound c0 to link the wavenumber k to the angular frequency ω: k = ω/c0. Only general
and non restrictive assumptions are put forward: i) small displacement and small strain, ii)
homogeneous and isotropic medium with hysteretic damping (density ρ, damping factor η,
complex Lamé coefficients λ = λ0(1 + jη) and µ = µ0(1 + jη)), iii) steady state harmonic
waves of angular frequency ω = 2πf , iv) system with large dimensions compared to the
wavelength λ0.
In such a system (and out from exciting sources), the scalar potential φ and the displace-
ment u = grad φ satisfy the scalar and the vectorial Helmholtz equation, respectively
(∆ + k2)φ = 0 and (∆ + k2)u = 0, where the wavenumber is k =

√

ρω2/(λ + 2µ).
So the complex amplitude û of the displacement field between two junctions writes û(x) =

A e−jkx + B ejkx, where A and B are the complex amplidudes, respectively of the for-
ward and the backward propagating wave. Writing the wavenumber k = k0(1 − jθ) leads

to k0 =

√

ρω2η2/(2(λ0 + 2µ0)(1 + η2)(
√

1 + η2 − 1)) and θ = (
√

1 + η2 − 1)/η. Among
quadratic variables are the kinetic energy density T , the strain energy density U , the total
energy density W = T + U , the lagrangian energy density L = T − U and the structural
intensity I . Their complex amplitudes (the notationˆrefers to and whose real parts stand for
time averages) are obtained from the displacement field. This is detailed in Table 1, where ∗

refers to the conjugate number. For example the complex strain energy density Û writes:
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structural intensity Î = jω(λ + 2µ)u,xu∗/2

kinetic energy density T̂ = ρω2uu∗/4

strain energy density Û = (λ + 2µ)u,xu∗

,x/4

total energy density Ŵ = T̂ + Û

Lagrangian density L̂ = T̂ − Û

Table 1: Complex amplitudes of quadratic variables.

Û(x) =
λ + 2µ

4
kk∗

(

AA∗ e−j(k−k∗)x + BB∗ ej(k−k∗)x + A∗B e−j(k+k∗)x + AB∗ ej(k+k∗)x
)

.

(1)
The kinetic energy density T̂ is an exception as the only purely real quadratic quantity
among those presented in Table 1. Time averages of quadratic variables are governed by two
wavenumbers k + k∗ and k − k∗ matching with two different scales of variation (Figure 1),
and k − k∗ is the wavenumber that describes power transfers at a large scale compared to the
wavelength [8].
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Figure 1: One-dimensional longitudinal counter-propagative waves out from exciting sources
in a steel medium (medium 1 in Table 2 except damping factor η = 0.07) at 2100Hz: a) Real
part of the displacement u ; b) kinetic energy density T .

Space-Averaged Variables and Large Scale Components for 1D Plane Waves

At the scale of the half wavelength λ0/2 = 2π/(k + k∗), the space average of any quadratic
variable < Q > is defined as following:

< Q > (x) =
2

λ0

∫ x+λ0/4

x−λ0/4
Q(u)du, (2)

where λ0/2 also is the scale of variation of small scale components of Q (Figure 1). Large
scale components of quadratic variables, with wavenumber k−k∗ appearing in (1), are linked
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to their half-wavelength-scale space-averaged values defined by (2). For example the space-
averaged strain energy density < Û > writes

< Û > (x) =
λ + 2µ

4
kk∗

(

AA∗ e−j(k−k∗)x + BB∗ ej(k−k∗)x
)

f(θ). (3)

The factor (λ + 2µ) kk∗

(

AA∗ e−j(k−k∗)x + BB∗ ej(k−k∗)x
)

/4 stands for the large scale
components of Û , which are obtained by neglecting interferences between the two considered
plane waves. The averaging process also introduces the last factor of equation (3) f(θ) =

sh(π θ)/(π θ) that depends on the only dissipative properties of the medium. The same
process can be used to obtain < T̂ >, which is found to be proportional to ˆ< U >:

< Û >=< T̂ > (1 + jθ)/(1 − jθ). (4)

Therefore the result is similar for the other space-averaged energy densities < Ŵ >=< T̂ >

+ < Û > and < L̂ >=< T̂ > − < Û >, and also for the space-averaged structural intensity
< Î >.

Differential Equation for the Space-Averaged Structural Intensity

Only the propagation of large scale components of quadratic variables is considered here.
Between junctions, the space-averaged structural intensity < I > satisfies the following dif-
ferential equation:

∆ < I > +(k − k∗)2 < I >= 0. (5)

Space-averaged energy densities < T >, < U >, < W > and < L > also satisfy this
differential equation. Since the wavenumber k − k∗ is purely imaginary, the space-averaged
structural intensity < I > is the evanescent solution of a propagation equation. Equation (5)
is available for any value of the damping loss factor η, but in the case of a slight damping,
it writes the same as the basic VCA equation previously derived in many works, originally
in [2] and for example in the General Energy Method (GEM) [3] for beams and rods.

Space-Averaged Energy Densities

Here the choice has been made to work with the space-averaged structural intensity < I >

and other space-averaged quadratic variables < T >, < U >, < W > and < L > can be
derived from < I >. Similarly to acoustics [7], the structural intensity and energy densities
(Table 1) are linked by:

I,x = −2jω(T − U) + P, (6)

where the input power density P , associated with the external load fx, is defined as

P = −jωfx.u∗/2. (7)

Averaging equation (6) and using the proportionnality (4) between < T > and < U > leads
to < T > for example. Then other averaged energy densities < U > (4), < W > and < L >

are derived from < T >.
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BOUNDARY CONDITIONS

Space-averaged quadratic quantities, first < I > and then < T >, < U >, < W > and
< L >, are obtained by solving the local equation (5) with appropriate boundary conditions
for either passive or active junctions and which are presented in this section.

Active Junctions

At x = a where the concentrated load is fx, < I > and < I >,x are discontinuous. The input
power density P (7) is an appropriate parameter expected to appear in boundary conditions
for active junctions. The two conditions written here are about the left limit value < I > (a−)

and the right limit value < I > (a+): the active junction is qualified by < I > (a+)− < I >

(a−) and < I > (a+)/ < I > (a−) [8]. The first boundary condition writes

< I > (a+)− < I > (a−) =
P

2

(

1 +
k∗

k

P ∗

P

)

f(θ) (8)

whereas the second one introduces the brought back impedance Zbb from x = −L1 back to
x = a−

Zbb = ρc
ejk(L1+a) − e−jk(L1+a) + z1(e

jk(L1+a) + e−jk(L1+a))

z1(ejk(L1+a) − e−jk(L1+a)) − ejk(L1+a) − e−jk(L1+a)
. (9)

and finally writes

< I > (a+)

< I > (a−)
= 1 +

P

(

1 +
k∗P ∗

kP

)

2j
PP ∗

fxf∗

x

(

Zbb −
k∗Z∗

bb

k

) . (10)

Passive Junctions

Impedance Condition

The impedance condition about the complex amplitude of the displacement u writes u,n(L)+

jkzu(L) = 0, where z is the specific impedance at x = L: z = z1 when L = −L1 and z = z2

when L = L2. Using this condition and the displacement form finally leads to the following
mixed boundary condition for the complex amplitude of the space-averaged structural inten-
sity [8]:

< I >,n (L) + j(k − k∗)
1 + zz∗

z + z∗
< I > (L) = 0. (11)

Discontinuity of the Material Density

Boundary conditions for a discontinuity of the material density at x = d (Figure 2) are ex-
plained here. The three specific impedances za− , za, za+ and the three specific impedances
zb− , zb, zb+ are respectively linked by za+ + za− = za and zb+ + zb− = zb. At the bound-
ary x = d between the two media the displacement and the normal stress are continuous:
u(d−) = u(d+) and (λ1 + 2µ1)u,x(d−) = (λ2 + 2µ2)u,x(d+).
At x = d the space-averaged structural intensity is continuous. So the first boundary condition
writes

< I > (d+) =< I > (d−). (12)
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Figure 2: Discontinuity of the material density: configuration of the studied system.

Since specific impedances zd− and zd+ can be computed from specific impedances z1 and z2

as brought back impedances, mixed boundary conditions in the form (11) can be written for
space-averaged structural intensities < I > (d−) and < I > (d+). These lead to the second
boundary condition about the ratio < I >,x (d+)/ < I >,x (d−), which finally writes:

< I >,x (d+)

< I >,x (d−)
= −

k2 − k∗

2

k1 − k∗

1

1 + zd+z∗d+

1 + zd−z∗
d−

zd− + z∗d−

zd+ + z∗
d+

(13)

NUMERICAL EXAMPLE

The approach consists in solving equation (5) along the one-dimensional structure, with
boundary conditions: i) equations (8) and (10) for a concentrated load, ii) equation (11) for
a specific impedance z at the end of the system, iii) equations (12) and (13) for a disconti-
nuity of material density. Once the space-averaged structural intensity < I > is obtained,
space-averaged energy densities < T >, < U >, < W > and < L > are derived. Compu-
tations were carried out for pure longitudinal waves propagating at a frequency of 4000 Hz

either in a steel medium (Table 2) between −L1 = −10 m and d = 3 m or in an aluminium
medium (Table 2) between d = 2 m and L2 = 10 m (Figure 2). A first concentrated load
fx1

= 1 Nm−2 is located at a = −2 m and a second one fx2
= 2 Nm−2 is located at

b = 7 m. The specific impedance z1 is z1 = 0.05+0.01j means the junction is highly reflect-
ing and a little dissipative. The specific impedance z2 = 0.1 means the junction at x = L2 is
highly reflecting. The discontinuity of the material density at x = d implies a discontinuity of
the spatial derivative of both local (computed from the displacement field) and space-averaged
structural intensities. The averaged formulation enables a good reconstitution of this latter dis-
continuity (Figure 3a). With the averaged quadratic formulation, the large scale components
of energy quantities are well reconstituted . When space-averaged, energy quantities like en-
ergy densities become smoother (Figure 3b and c). A model based on the displacement with
6 finite element nodes per wavelength would require 161 nodes at 4000 Hz whereas very few
nodes are necessary on −L1 ≤ x ≤ L2 for the space-averaged quadratic model presented in
this work. This demonstrates the relevance of this averaged energy method as the frequency
increases. Moreover resonances can be observed as the highest and lowest values of the input
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impedance modulus |Za| = |Za+ + Za− | at x = a (where Za = fx1
/(jωu(a)) is computed

by using brought back specific impedances z1 and z2) are changing over (Figure 3d) inside
the frequency range [2000 Hz − 6000 Hz].

medium 1 medium 2
Density ρ (kg m−3) 7800 2700
Young Modulus E (Pa) 2.1 1011(1 + j 0.01) 0.7 1011(1 + j 0.01)

Poisson ratio ν 0.3 0.3

Table 2: Properties of media
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Figure 3: Energy quantities at 4000 Hz: a) real part of the structural intensities, b) kinetic en-
ergy densities, c) real part of the strain energy densities. Solid line: solution obtained from the
displacement field, dashed line: solution obtained from the space-averaged quadratic method ;
d) modulus of the input impedance Za at x = a.
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CONCLUSIONS

The link between large scale components of quadratic variables in plane waves and their
space-averaged value, when the average is made along a half wavelength, enabled the de-
velopment of a quadratic formulation based on space-averaged variables to describe one-
dimensional power transfers at a large scale compared to the wavelength. Boundary condi-
tions for the space-averaged structural intensity have been obtained from the displacement
formulation, in cases of both active and passive junctions. Lastly a numerical example has
been given and when compared to the solution of the displacement formulation, it proves this
averaged quadratic method is relevant to model global energy transfers along one-dimensional
dissipative structures in the middle frequency range: i) the space average leads to a simpli-
fication of quadratic fields, but the approximation still enables to access the modal behavior
and resonances, in particular from the input impedance, ii) the resulting quadratic response is
more space-detailed than the one of SEA since the space average interval is well defined as
the half wavelength instead of SEA subsystems.
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