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Abstract 
This paper concerns the higher frequency vibrations of built-up structures and in 
particular systems comprising two subsystems connected via an arbitrary interface.  
The individual subsystems are analyzed using free-interface component mode 
synthesis.  Analytical expressions are developed which represent the dynamic 
couplings between the sets of subsystem modes.  These expressions explicitly include 
the effects of uncertainty in the parameters of the subsystems, the uncertainty being 
introduced into the modal properties of the subsystems.  The general aims are to 
predict ensemble mean and variance of the subsystem energy.  The dynamic coupling 
between the two subsystems is seen to fall into three categories: (1) strongly 
connected, (2) weakly connected and (3) weakly coupled.  Effective mass and 
damping are introduced to account for the dynamic influence on a particular 
subsystem mode of the remaining modes after the subsystems are coupled.  It is seen 
that for weak connection/coupling, the inter-modal coupling relations reduce to those 
of two sets of stiffness-coupled oscillators (with modified damping values, if 
appropriate).  As a result, the model can be accommodated within a recently 
developed theory for the prediction of the ensemble mean and variance of the energy 
response of coupled oscillator sets.  This provides an approach to the analysis of 
complex, built-up systems in a more systematic way than conventional SEA.  
Numerical examples are given for two plates connected by a single point.  The 
present theory is seen to give good predictions for weak connection/coupling when 
compared with Monte Carlo simulations, if the statistical overlap of the system is 
sufficiently large.  The approach helps to give insight into the physics of the coupling 
mechanism of subsystem modes.  It also has the potential for forming SEA-like 
models of the system and predicting energy response and variance directly from 
coupled FE models of the individual subsystems, without the need for solution of the 
global eigenvalue problem. 
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INTRODUCTION 

Statistical Energy Analysis (SEA), as an established subsystem- and energy-based 
approach, [1], is very appealing for high frequency vibration modelling.  Compared to 
traditional deterministic Finite Element Analysis (FEA) [2], which is usually very 
detailed and expensive, SEA requires relatively very little computational cost.  The 
paper presented here is aimed to predict the SEA-like response and variability of 
complex structures, and in particular systems comprising two subsystems coupled via 
an arbitrary interface, at higher frequencies in a more systematic way than 
conventional SEA.  Free-interface component mode synthesis is used to develop the 
inter-modal coupling relations, which are seen to fall into three categories: (1) 
strongly connected, (2) weakly connected and (3) weakly coupled.  In the case of 
weak connection/coupling, the inter-modal couplings reduce to two sets of stiffness-
coupled oscillators (with modified damping values, if appropriate).  The results can 
then be accommodated with a recently developed theory for coupled oscillators [3-6].   
 The paper is organized as follows.  In section 2, the inter-modal dynamic 
coupling relations between the two sets of subsystem modes are quantified 
analytically.  The concepts of strong and weak connection are discussed and the 
conditions of weak connection and weak coupling are distinguished.  Effective mass 
and damping are introduced.  In section 3 the newly developed coupled-oscillator 
approach is briefly reviewed.  The results are directly applicable for weakly 
connected/coupled subsystems.  In section 4, numerical examples are presented.  

INTER-MODAL DYNAMIC COUPLING IN A BUILT-UP SYSTEM 

In [7], a mode-based approach was developed to predict the vibration of two general, 
conservatively coupled subsystems as shown in Fig. 1 based on free-interface 
decomposition.  The approach here is used to formulate the dynamic coupling 
relations between the modes of two coupled subsystems via an arbitrary interface.  
 The vibration equation of motion of subsystem , in terms of a truncated set of 
free-interface component modes, can be written as 

a

 { } { }, ,
a a a a
j j e j Iq Y f f⎡ ⎤= +⎣ ⎦ j  (1) 

In the above equation,  is the a
jq thj  modal amplitude of subsystem , and a ,

a
e jf  and 

,
a

I jf  are respetively the modal forces corresponding the external excitation and the 

interface force acting on subsystem , and a a
jY⎡ ⎤⎣ ⎦  is the diagonal, modal receptance 

matrix, the thj  diagonal element being given by 
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Here , a
jm a

jω  and a
jη  are respectively the thj  modal mass, natural frequency and 

loss factor.  For simplicity, it is assumed a
jm ma=  and a

j aη η= . Similar expressions 
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can be established for subsystem b  by replacing the superscript a  with b  in Eqs. (1)-
(2).   
 The interface force and displacement [6] are now decomposed in terms of a set 
of basis interface components pψ  [8-9], with  

 ( ) ( )
I

p I p I I pp
V

V V dVψ ψ δ′ ′=∫  (3) 

 Enforcing the displacement continuity and force equilibrium conditions along 
the interface [6], after some algebra, finally gives 
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,
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where, the superscript T  represents the transpose, and 
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a
jφ  and b

kφ  are the thj  and  mode shapes of subsystems  and b , respectively.   thk a

 Eq. (4) indicates that [ ]aG  is the Green function matrix which gives the modal 
amplitudes of subsystem  per unit modal forces applied to the same subsystem, and a
[ ]abG  the Green function matrix which gives the modal amplitudes of subsystem  
per unit modal forces applied to subsystem .  The inter-modal dynamic stiffness 
coupling matrix can thus be determined analytically as  

a
b

 [ ] [ ] 1 a ab

ba b

D D
D G

D D
− ⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

 (10) 

 Eq. (10) helps to gain insight into the physics of the coupling mechanism of the 
subsystem modes, meanwhile, it allows the effects of uncertainty in the parameters of 
the subsystems and the interfaces to be included through Eqs. (5)-(8).  

Coupling strength analysis: strong connection, weak connection, weak coupling 

Physically, if some of the off-diagonal elements of [ ]D  are comparable to the 
diagonal elements, it indicates that the dynamic behaviour of each subsystem mode is 
significantly affected by both the mode set of the other subsystem and the rest of the 
modes within the same set of the subsystem.  The two subsystems are then said to be 
strongly connected, in which case, full inter-modal coupling should strictly be 
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considered if an accurate solution is required.  
 If [ ]D  is diagonally dominant, each subsystem mode remains largely 
uncoupled from the rest of the modes within the same set, in which case, the two 
subsystems can then be said to be weakly connected.  This correspondingly gives, by 
the first-order perturbation of Eq. (10),  

 ( ) ( )
1 1a a

j j jp jppp
p p

D Y A Bα
− − α ′′

′

⎛ ⎞
≈ + +⎜

⎝ ⎠
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′
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Eq. (11) quantifies how the modal properties of the thj  mode of subsystem  are 
modified by the coupling, and Eq. (12) formulates the coupling stiffness terms 
between the 

a

thj  and the  modes of subsystems  and b .  The term thk a ( ) 1

pp
A B −

′
+  

here accounts for the collective influence of the rest of the modes on the coupling of 
any particular pair of modes.  
 As suggested in [10], in the case of weak coupling, the modal properties of 
subsystems  and  are affected very little by each other after coupling.  Then  a b

 [ ] 1a
a jD Y

−
⎡ ⎤≈ ⎣ ⎦ , [ ] 1b

b kD Y
−

⎡ ⎤≈ ⎣ ⎦  (13) 
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p
D A Bα β−≈ +∑  (14) 

On the other hand, weak coupling is defined in [3-4] to occur if 

 2 2 2 1γ κ= ∆ << , ( )22 E ab
jk a b cD m m 2κ ω⎡ ⎤= ⎢ ⎥⎣ ⎦

 (15), (16) 

Here  is the connection strength parameter, and 2κ ∆  is the damping bandwidth of the 
two subsystems within the frequency band of interest, and [ ]E i  the expectation, and 

cω  the central frequency.  Thus, the coupling strength decreases as the damping 
increases.  

Effective mass and damping 

For mass-normalised modes, Eq. (11) can be rewritten as 

 ( ) ( )( ) { } { }2 21 Re Ima a a a
j j j jD i D iω η ω a

jD′ ′≈ + − + +  (17) 

The effective mass and effective damping induced to the  mode of subsystem , 
after coupling with subsystem , can then be defined as 

thj a
b

 { }2

1 Rea a
j jm D

ω
′ ′≈ − , { }2

1 Ima
j Dη

ω
a
j

′ ′≈  (18), (19) 

 In Ref. [7], it was shown that both the effective mass and damping generally 
decrease as frequency increases.  In the case of weak connection, , 

and for weak coupling, both 

( )1a
j am m′ << =

a
j am ′ m<<  and a

j aη η′ << .  
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THE COUPLED-OSCILLATOR THEORY 

In [5-6], a theory was presented for the prediction of the ensemble mean and variance 
of the energy response of coupled oscillator sets, as shown in Fig. 2.  The thj  and 

 oscillators of sets  and  are connected by a spring .  Assume that (1) the 
strength of connection between any pair of oscillators is sufficiently weak, (2) the 
properties of each set of oscillators are sufficiently random and (3) the modal overlap 
of each set is sufficiently high.  Also for simplicity assume that each oscillator in set 

 has the same mass , damping bandwidth 

thk a b ab
jkK

a am a∆  and ensemble average excitation 
spectral density a

fS  with similar assumptions for set .  Then under rain-on-the-roof 
excitation the ensemble mean energy of set  is 

b
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S Sn nE n
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π πκπ

κ
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f fS

m
π

⎟⎟∆
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where,  are the modal densities of subsystems  and b , ,a bn a ( ) 2a b∆ = ∆ + ∆ , and  

 ( )2 2E ab
jk a b cK m mκ ⎡ ⎤= ⎣ ⎦

2ω  (21) 
is the parameter defining the strength of connection.  The ensemble variance of the 
energy of set , under the assumptions of Poisson and GOE natural frequency 
spacing statistics, can be predicted, respectively, as 
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In the above, Ω  is the excitation bandwidth and 
 

24E Eab ab
t jk jkK Kσ 2⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦  (24) 

A rigorous calculation of tσ  remains an open issue.  In [6], tσ  is estimated as 
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where ( ) 2a bn n n= + , 
24 2

, ,E Ea b a bφ φ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  are the typical values of the statistical 
moments of the mode shapes of subsystems  and  (e.g. 3 for GOE mode shape 
statistics and 2.25 for sinusoidal modal shapes [11]), and  is the number of 

a b
IN
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interface points.  A fuller description is given in Ref. [6].  It is worth noting that, to 
account for the effective damping effects appropriately in the case of weak 
connection,  in Eqs. (20), (22)-(23) needs to be modified as ∆ ( ) 2a b′ ′ ′∆ = ∆ + ∆ , ,a b′∆  
being the in-situ effective modal bandwidths of the two subsystems. 

NUMERICAL EXAMPLES 

The foregoing analysis is implemented to predict the ensemble mean and variance of 
the energies of two coupled plates connected by a single point.  Comparisons are 
made with those of Monte Carlo simulations of an ensemble of random structures.  
The system models considered comprise two plates.  Plate 1 is rectangular with 
simply supported edges and an area of 0.32m2.  Plate 2 is a rectangular plate of an 
area 0.23m2 but with one corner area of 0.03m2 cut off.  Each plate has a thickness of 
3mm, with Young’s modulus 108N/m2, density 103kg/m3, Poisson ratio 0.38 and 
damping loss factor 0.02.  The frequency bandwidth employed is 0.2ωΩ = .  Each 
plate is assumed to be with an uncertainty which can lead to a sufficiently large 
statistical overlap for the frequency range of interest.  The Monte Carlo simulations 
are based on the solutions of a sufficient number of realizations of the system as an 
ensemble, the randomization of each plate being achieved by ‘‘geometry 
perturbation’’.  An ensemble of 600 sample systems are generated which is sufficient 
enough for the convergence of the ensemble mean and a relative stable convergence 
of the ensemble variance [6].  The ensemble mean and variance of energy can then be 
calculated from the Monte Carlo simulations.   
 Fig. 3 compares the ensemble mean of energy of each plate.  It is seen that the 
present theory tends to agree well with the Monte Carlo solution for 750 /rad sω > . 
(Above this frequency, the induced effective damp loss factors for both plates are less 
than a third of the nominal damping loss factor, and thus the two plates can be treated 
as weakly coupled.)  The apparent fluctuations of the Monte Carlo solutions at lower 
frequencies are due to lack statistical overlap of the ensemble examples.  They 
gradually improved at higher frequencies as the system modal overlap increases.  The 
poor agreements at very low frequencies are due to the strong coupling effects 
between the two plates in which case the main assumption to maintain the validity of 
the predicting theory has broken down.   
 Fig. 4 compares the relative variance of energy of each plate.  Comparing to the 
Monte Carlo solutions, Eq. (22) behaves significantly better than Eq.(23) for plate 1 
(conforming to Poisson statistics [6]); and for plate 2 (conforming to GOE statistics 
[6]) the latter equation has a better performance than the former one.  This may 
suggest that, in the weakly coupling region, the ensemble variance of energy of each 
subsystem is dominated by only the statistics of the subsystem itself but relatively 
less sensitive to those of the rest of the system.  Similar to Fig. 3, Fig. 4 shows that 
the present theory is not in good agreement with the Monte Carlo solution at low 
frequencies.  This may well explained as partly due to the strong coupling limitation 
of the present theory, and partly due to the inevitably lack of statistical overlap.   
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Figure 1 – Two subsystems connected via an arbitrary interface 
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Figure 2 – Two spring-coupled sets of oscillators 
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 Figure 3 – Ensemble mean energy   Figure 4 – Relative variance of energy 

SUMMARY 

In this paper, the inter-modal coupling relations are established for built-up structures 
comprising two subsystems connected via an arbitrary interface based on free-
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interface component mode synthesis.  The dynamic coupling between the two 
subsystems is seen to fall into 3 categories as (1) strongly connected, (2) weakly 
connected and (3) weakly coupled.  Effective mass and damping are introduced to 
account for the dynamic influence on a particular subsystem mode of the remaining 
modes after the subsystems are coupled.  In the sense of weak connection/coupling, 
the inter-modal coupling relations reduce to those of two sets of stiffness-coupled 
oscillators (with modified damping values, if appropriate).  As a result, a coupled 
oscillator theory can be used to predict the ensemble mean and variance of the energy 
of each subsystem.  Numerical examples are given for a system of two plates 
connected at a single point.  The approach is seen to agree well when the two 
subsystems are weakly coupled. 
 The approach helps to give insight into the physics of the coupling mechanism 
of subsystem modes.  It also has the potential for forming SEA-like models of the 
system and predicting ensemble mean energy and variance directly from coupled FE 
models of the individual subsystems, without the need for solution of the global 
eigenvalue problem. 
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