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Abstract 
Blind Deconvolution (BDC) algorithms typically assume a noiseless signal 
model, and a stationary signal propagating through a static channel. In real 
world systems this is almost never the case (e.g. the problem of interest in this 
paper: a noisy multipath propagation environment where the source and 
receiver are moving). In such cases, it is proposed that model-based 
techniques be applied to incorporate further a priori information about the 
system into the existing blind processing framework.  The significant original 
contributions of this work are as follows: First, a modified formulation of the 
extended Kalman filter (EKF) is developed that allows incorporation of a 
priori information into gradient-based blind processing algorithms. This 
formulation is then applied to the existing Natural Gradient BDC algorithm.  
Finally, simulation results are presented that suggest significant improvement 
in signal recovery performance through application of the modified EKF to the 
NG BDC algorithm for dynamic noisy channels 

INTRODUCTION 

 It is common in Acoustics and communications to measure a signal that has 

been degraded by propagation through an unknown channel prior to 

measurement. While only the degraded measured signal may be available for 

processing, the actual data of interest may be the original signal or perhaps the 

filtering properties of the channel itself. In these situations, it may be desirable 

to reverse the filtering process through the application of an inverse filter to 

recover the original signal. In a situation where neither the input signal 

properties nor the channel properties are deterministically known, this problem 
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is known as blind deconvolution (BDC).Typically, BDC algorithms assume 

that the system is noiseless, that the propagation channel is static, and that the 

source signal is stationary. However, these assumptions are often violated in 

many real world cases. One class of examples that violate the former two 

assumptions consists of cases including noisy multipath propagation 

environments where the source and/or receiver locations are time varying. In 

such cases, it is proposed that model-based techniques be applied to 

incorporate further a priori information about the system into the existing 

blind processing framework. The significant original contributions of this 

work are as follows. First, a modified formulation of the extended Kalman 

filter (EKF) is proposed which allows incorporation of a priori information 

into gradient-based blind processing algorithms. This formulation is then 

applied to the existing Natural Gradient (NG) [1] BDC algorithm.  Finally, 

simulation results are presented which suggest significant improvement in 

signal recovery performance through application of the modified EKF to the 

NG BDC algorithm for dynamic noisy channels.  

BACKGROUND 

BDC Problem Formulation 
 

The BDC problem is typically considered as a discrete time process, where 

the discrete sequences result from sampling the signals at the symbol rate 

Therefore, consider a system with an unknown discrete input signal s(k) that 

propagates through some channel with impulse response h(k). The actual 

filtering process of the channel may be described by a number of forms, 

however it is convenient to consider the filtering in terms of its vector (bold) 

impulse response. It is assumed that the signal available for measurement has 

been filtered by this channel and can be represented as the convolution of the 

input signal s(k) with the channel impulse response vector h(k).  This 

measured signal is then given by  

 

(1) 

 

For the case where h(k) is of finite length, M+1. 

 

The term deconvolution refers to the process by which the effects of this 

convolution are reversed by convolving the measured signal x(k) with an 

estimated inverse impulse response )](),...,([)( 0 kwkwkw L= .  The desired 

result is then to find )()( 1
khkw
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is an arbitrary constant delay.  Then the input signal can be approximated as 
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Note that in keeping with the notation of [1,3], the length of the inverse filter 

is specified as L+1 taps. 

 

The designation of this process as blind refers to the assumption that neither 

the source signal nor the channel impulse response are known 

deterministically.  In the case either of these is known a priori, then the 

problem may still be non-trivial, but may be approached using techniques such 

as Least Mean Squares (LMS) . 

 

 Natural Gradient BDC Algorithm 

 
The NG BDC algorithm was presented by Amari, et al 

[1,3] and is a gradient based technique that maximizes the entropy of the 

signal y(k) with respect to the estimated inverse filter w(k).  The resulting 

weight updating equation is then described by  

(3) 

 

Where 

(4) 

 

 

and (.)φ is a nonlinear activation function [1,3].  The choice of the nonlinear 

function depends largely on the probability density function (PDF) of the input 

signal s(k) [4].  For a super-Gaussian (positive kurtosis) input, such as human 

speech, it is common to use )tanh()( yy =φ or.  For a sub-Gaussian (negative 

kurtosis) input, such as a digital communication signal, it is common to use 
3)( yy =φ  . 

 

EKF-BDC FORMULATION  
 

To apply model based processing to the BDC problem, we make several 

modifications to the EKF algorithm. The result is an unconventional 

formulation of the state space model and the EKF for blind parameter 

estimation.  This formulation will be referred to as EKF-BDC1. 

 

 Development 

 

In the blind deconvolution problem, there are two variables that must be 

estimated: the input signal s(k) and the inverse filter w(k) Because we are 

concerned with the case where the inverse signal has stationary statistics and 

the inverse filter varies according to a known model, we assume that the 
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unknown state vector that we are attempting to estimate is the inverse filter 

( )kw .  Because of the blind nature of the problem, and the assumption of a 

random input signal s(k), there is insufficient information to predict the actual 

measurement x(k) from this state vector alone without deterministic 

knowledge of s(k). Because the true measurement cannot be predicted, we 

then assume that our ``measurement'' is the output of the gradient update 

equations.  

 

In this case, we use the NG BDC gradient update equation given in Eq. (3). 

These equations comprise a function of the last estimate ( 1)k −w , the current 

actual measurement x(k), and past actual measurements and intermediate 

calculations x(k-j), y(k-j) and u(k-j), as given in Eqs. (1), (2), and (4), 

respectively, for {1,.... }j L∈ , where L+1 is the length of the inverse filter w(k)  

We therefore augment the state vector with these values, so that it takes the 

form 

 

0( ) [ ( ),..., ( ), ( ),..., ( 1),

( ),... ( 1), ( ),..., ( 1)]
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where the notation ( ) ( )ju k u k j= − and likewise for $y$ and $x$, is introduced 

for convenience.  This state vector defined above contains the required values 

for the NG BDC update, however it does not contain any additional necessary 

values for the state prediction. Any such variables must be appended to the 

state vector defined in Eq (6).  

 

The measurement calculation then takes the form 

ˆ( ) ( ( 1| 1, ( ))k g k k x kθ= − −w  

where ˆ( ( 1| 1), ( ))g k k x kθ − − , x(k))$ is a vector form of the nonlinear Natural 

Gradient deconvolution weight updating equation given in Eq.3. The predicted 

measurement is then given by  

 

ˆ( | 1) ( ( | 1)k k c k kθ− = −w  

 

where in this case the function ˆ( ( | 1)c k kθ −  simply extracts the vector 

0[ ( ),..., ( )]Lw k w k from the state estimate and can take the form of a linear 

matrix operator. 

 

(5) 

(6) 
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(8) 
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The innovation is then calculated as the vector difference  

ˆ( ) ( ) ( | 1)e k w k w k k= − −  

While the measurement function in Eq. (8) is linear, the measurement 

calculation function in Eq(8) is a nonlinear transform of the state variable 
ˆ( 1| 1)k kθ − − and of the noisy variable x(k). Therefore, the innovation 

covariance calculation must then account for the uncertainty of these variables 

by propagating the covariances of x(k) and ˆ( 1| 1)k kθ − − using linearizations of 

Eq. (8) with respect to x(k) and ˆ( 1| 1)k kθ − − .   

 

Because the processing task is blind, there is no reference signal u(k) on 

which to base the state prediction. We therefore use the noisy measurement 

x(k) in its place, and the state prediction takes the form 

ˆ ˆ( | 1) ( ( 1| 1), ( ))k k f k k x kθ θ− = − −  

Where ˆ( ( 1| 1), ( ))f k k x kθ − − , is a function that describes the dynamics of the 

system. It is noted that ˆ( ( 1| 1), ( ))f k k x kθ − −  may be linear or nonlinear. Because 

the state prediction is now a function of the noisy measurement x(k), the 

covariance vR of the noise in this measurement must be accounted for in the 

state covariance prediction by propagating the covariance of x(k) through a 

linearization of Eq. (10) 

 

It should be noted that in substituting x(k) for u(k-1), the index is changed 

such that in Eq. (10) the prediction actually uses the current, or kth 

measurement to predict the value of ( )kθ .  While this would seem to conflict 

with the notion of prediction and correction, the values of ( | 1)k kθ −  that are 

calculated using x(k) are not actually used in predicting the state variables of 

interest, namely the estimation of ˆ ( | 1)k k −w . Instead, the values that depend 

on x(k) are used only in the calculation of the following ``measurement'' that 

occurs at time k+1.  As such, these values and their corresponding entries in 

the state covariance matrix are not changed by the a posteriori state 

correction. This implementation is made for the sake of convenience, but it is 

possible to reformulate the algorithm such that the ``prediction'' step depends 

only on measurements from time k-1 without affecting the performance of the 

system. This is done in the formulation given in SecV.  There, the formulation 

avoids this issue by restructuring the state space such that the prediction step 

does not depend on x(k). 

 

The proposed algorithm is summarized below in Eqs. (11)-(24). The signal 

path described by these equations can be seen in block diagram form in Figs. 1 

and 2. 
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Prediction 
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Measurement 
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1ˆ( ) ( | 1) ( ) ( )T

eK k P K k C k R k−= −  

Correction 

ˆ ˆ( | ) ( | 1) ( ) ( )k k k k K k kθ θ= − + e  
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Figure 1:  Block diagram of the signal path for proposed EKF-BDC1 

algorithm.  The function   ˆ( ( 1| 1), ( ))g k k x kθ − −  is the natural gradient weight 

updating equation.  The function ˆ( ( 1| 1), ( ))f k k x kθ − − is the state predictor based 

on the channel dynamics model.  The Kalman gain matrix K(k) is updated as 

shown in Fig. 2. 

 
 

Figure 2:  Block diagram of the Kalman gain and state covariance estimate 

calculation. The state and measurement noise covariances rR  and vR  are 

assumed to be known through prior knowledge.  The matrices A(k), B(k), 

C(k), D(k), and E(k) are calculated at each time k according to Eqs. (13), (14) 

(19), (20), and (21), The notations ``Pre A'' and ``Post A'' indicate 

premultiplication and postmultiplication, respectively, by the matrix A. 

 

Preliminary investigations with this algorithm focused on the case of a 

stationary channel in the presence of noise. Under this assumption, the channel 

dynamic model is assumed to be described by a first order Gauss-Markov 

process. As a result, the state variable of interest, namely the vector of inverse 

filter coefficients, ( )kw is assumed to evolve according to 

( 1) ( ) ( )k k k+ = +w w r  (25) 
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where r(k) is a vector of zero mean Gaussian white noise with covariance 

rR .  Noting that the calculation of values 
1 1[ ( ),..., ( )]Lu k u k−

, 
1 1[ ( ),..., ( )]Ly k y k−

, 

1 1[ ( ),..., ( )]Lx k x k−
are merely a shift of the previous values, the state prediction 

function then takes the relatively simple form 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C.  Discussion  

This formulation is unconventional in several ways.  First, the primary part 

of the state vector is the vector of inverse filter coefficients.  Second, the state 

vector contains a large number of intermediate variables. The result is an 

unwieldy vector of length 4L+1 (not including variables to describe the state 

dynamics) requiring a (4L+1)x(4L+1) Jacobian matrix A(k). Third, the noisy 

true measurement x(k) is used as a reference signal for the state prediction in 

addition to being used as an input to the measurement calculation. 
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