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Abstract 
Considering the effect of geometric nonlinearity and uniformly distributed stationary 
temperature, the bifurcation behaviors and chaotic phenomena of a bimetallic thin circular 
plate under transverse periodic excitation are investigated in this paper. First of all, the 
nonlinear dynamic equations for the bimetallic plate are established by employing the 
Galerkin’s technique. Furthermore, the critical conditions for occurrence of homoclinic and 
subharmonic bifurcations as well as chaos are studied theoretically by means of Melnikov 
function method. Finally, the chaotic motions are searched and simulated numerically with the 
application of Computer Algebra Systems Maple, and the Poincaré map and phase curve along 
with time-history diagram are used to evaluate if a chaotic motion appears. The results indicate 
that there exist some chaotic motions in heated bimetallic plate. 

INTRODUCTION 

The present discussed bimetallic plates are widely used in precision instruments and 
micromachines. Much attention has received for the thermal stability problem of this 
kind of plates and shells[4], [5]. However, there are few archival publications related to 
their chaotic motion and bifurcation behavior to the best of authors’ knowledge. By the 
redetermination of reference surface of coordinate, the authors obtained the compact 
control equations recently for the nonlinear vibration problem of heated thin bimetallic 
plates and further gained their periodic solutions, but still with no concern of their 
chaotic motion[6], [7]. 

In fact, the nonlinear dynamic system related to elastic structure has received 
great attention to the forced vibrations and model analyses for beams, however, the 
chaotic motions and bifurcation behaviors of plates and shells are not well established 
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to the best of authors’ knowledge, relatively little work has been done on them[1], [8]. 
Based on the governing equations set up by authors in former works[6], [7], the chaotic 
motion of a thin circular bimetallic plate under combined uniformly distributed 
stationary temperature and transverse periodic excitation are investigated. The critical 
conditions of bifurcations and chaos are given theoretically and the chaotic motions are 
simulated numerically. 

DYNAMIC BASIC EQUATIONS 

Consider a bimetallic circular plate with its total thickness  small in comparison with 
radius a  is composed of two thin homogeneous isotropic metallic plates bonded at the 
common surface, such that no slippage can occur. The clamped immovable edge 
condition for plate under uniformly distributed stationary temperature T  and 
transverse excitation 

h

cosq tω  is considered and the material properties of the plate are 
assumed to be independent of temperature. 

Let ,ih iρ , and iE iα  be the thickness, mass density, Young’s modulus and 
thermal expansion coefficient of each layer. Here, 2,1=i  represent the upper and lower 
layer respectively. Assuming Poisson’s ratio νν =i [4], then based on Von Kármán’s 
theory, the dimensionless equations governing the axisymmetrically large amplitude 
vibration of a circular bimetallic plate can be derived from Hamilton’s principle as 
follows 
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These governing equations for double-layered plates are similar to those of 

classical single-layered plates theory. The dimensionless quantities are related to the 
corresponding physical ones through the following relations 
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in which, r  is the radial coordinate,  the time variable, t δ  the damping coefficient,  
the deflection of reference surface, 

w
ϕ  the stress function,  and are two partial 

differential operators with respect to R , and C , 

4∇ L
D , mα , ρ  signify the effective 

extensional rigidity, flexural rigidity, first order thermal expansion coefficient and 
mass density, respectively(see references [6], [7] for detailed definitions). 

The following single mode expression for W , in the usual way, is assumed 
 
 ( )221)(),( RARW −= ττ  (5) 
 
which has already satisfied the boundary conditions of W  in equations (3-4). 
Substituting the equations (5) into compatibility equation (2) and noting the boundary 
condition of ϕ , the solution for stress function may be arrived as  
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Substitution of equations (5-6) into equation (1), and application of Galerkin’s 

method yield a nonlinear differential equation for A  as 
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This is a dynamic system of Duffing type with  
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Here, ( )νλ −= 116cr  is the critical dimensionless temperature at which the plate is in 
buckled state.  

ANALYSIS OF THE CHAOTIC MOTION 

The following discussions on chaotic problems of nonlinear dynamic equation are carried out 
only for the case of 0α > . To this end, introducing the new transformations  
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and denoting x y= , here dot defines the differentiation with respect to τ , then equation (7) can 
be rewritten to the following 
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Qualitative analysis for unperturbed system 

Apart from the ε -term, equations (8) becomes a unperturbed Hamilton system, with 
Hamiltonian 
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Obviously, this system has one hyperbolic saddle point at ( )0,0  and two centers at 

( )1,0±  in phase portrait. For different values of Hamiltonian, the system indicates different 
dynamic behavior. For , one obtains the two homoclinic orbits (here and henceforth, only 
the orbits in right half of phase space are discussed)  

0h =
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When satisfies (0,1)k ∈ 2( ) ( -1) (2- )h k k k= 2 2 , one gets a one-parameter family of 

periodic orbits within each of homoclinic orbit 
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the period of these orbits is ( )22 2kT k K= − k . Here sn ,  and  are the Jacobi elliptic 
functions and  is the elliptic modulus, 

cn dn

k ( )K k  is the complete elliptic integral of the first kind. 
It may be verified that d d 0kT k > , namely,  increases monotonically with , when , kT k 1k →

( )K k → ∞ ,  will approach infinity as a limit.  kT

if ( )1 2 1k ∈ ， satisfies 2 2 2( ) (1- ) (2 -1)h k k k k= 2 , one gets another one-parameter family of 

periodic orbits outside the homoclinic orbit[2]  
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now the orbits period becomes ( )24 2 1kT k K= − k , and still d d 0kT k > .  

Melnikov function and bifurcation for perturbed system 

For a pair of given prime integers m  and n , the Melnikov function of subharmonic orbits 
satisfies the resonance condition 2T mk nπ= Ω  in perturbed system (8) is expressed by[3] 
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where 0τ  is the reference time. When the parameters η  and f  satisfies 
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the subharmonic periodic solution exists and subharmonic bifurcation occurs in system. Here 

( )mR Ω  defines the threshold value for subharmonic periodic solution of order m . For the 
Melnikov function of periodic orbits (11), one has 
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Here ( ) ( ) ( )21K k K k K k′ ′= = − , ( )E k  is the complete elliptic integral of the second kind. 

From the above two equations, one can concludes that when  and 1n =

( ) ( ) ( ) ( )1
1 2,1 ,1 mf J m J m Rη > = Ω , the subharmonic periodic solution of order m  exists in the 

system. With an analogous analysis for periodic orbits (12), in the present case 
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Thus when  and 1n = ( ) ( ) ( ) ( )2

1 2,1 ,1 mf J m J m Rη > = Ω , the subharmonic periodic 
solution with odd order exists in the system. In a similar manner, the Melnikov function for 
homoclinic orbits (10) is easily given and explicitly computed by  
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So if and only if  
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the homoclinic orbits exist for which Melnikov function has a simple zero and consequently 
chaotic motions in the sense of Smale horseshoe may occur. Here ( )0R Ω  is defined as the 
threshold value for horseshoe transformation.  

From the above theoretical analysis one see, only subharmonic bifurcation of  will 
appear. Noting that in orbits (11) and (12), when  (namely ), , the following 
relation exists for each fixed  

1n =
m → ∞ 1k → 0h →
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which means that the thresholds of subharmonic bifurcation will tend to the thresholds of 
horseshoe transformation for a periodically excited bimetallic plate with f η  increasing 
gradually, subharmonic bifurcation reach its limit when Smale horseshoe occurs. 

NUMERICAL RESULTS AND DISCUSSIONS 

It is instructive to examine the behavior of the chaotic threshold 0R  as functions of the 
temperatures parameters λ  and excitation frequencies parameters Ω  or ϖ . A typical 
plot of 0R vs. ϖ  for some fixed values of λ  is shown in Fig. 1, from which one sees 
that ( )0R ϖ  graph exhibits a similar shape of parabola. Furthermore, 0R  has a single 
minimum at minϖ  , the most chaotic frequency. This value can be computed exactly by 
solving the transcendental equation 0d dR 0Ω =  for Ω , which gives the value of 

 or 0.763739Ω = 0.763739ϖ α=  as the root of this transcendental equation, and 
further the minimum of 0R  be found as ( )0 0.711293R Ω = . Fig. 1 also permits 
understanding how the parameter λ  influences the chaotic parameter region, for low 
values of excitation frequency, λ  does not affect 0R  appreciably; for high values of 
excitation frequency, the probability of chaotic motion is increase with λ . 

Further investigations for equation (8) are developed by means of computer 
simulation with the application of Computer Algebra Systems Maple to find the 
possible chaotic solution. The Poincaré map and phase portrait as well as 
time-displacement history technique are examined and the chaotic response is 
distinguished in this way from a regular one. A special group of dimensionless 
parameters include 3.0=ν ， 1.2 crλ λ= ， 2.31ϖ = ， 25Q = ， 0.5μ =  are taken as 
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an example, and the criterion of Melnikov is satisfied in this case. The corresponding 
system features are numerically simulated with 6000 computation points and depicted 
in Fig. 2. It is found from Fig. 2 that the chaotic characteristic appears, the 
time-displacement history shown in Fig. 2(a) is irregular, the phase portrait in Fig. 2(b) 
is intertwisted, neither repeatable nor regular, the Poincaré map in Fig. 2(c) reflects a 
complex chaotic attractor, thus we say that this is chaotic motion. 
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Figure 1 – 0 ~R ϖ  graph 

 
Figure 2 –Chaotic motion: (a) time –displacement history (b) phase portrait (c) Poincaré map 

The results of numerical simulation illustrate that a large deflection motion of the 
heated bimetallic plate possess complex aperiodic behavior under various values of 
μ , λ , ,Q ϖ . for example, a period-2 motion will be obtained when other parameters 
remain above and  only  changes μ  to  2.85, see Fig.3 for this result. 

 
Figure 3 –Period motion: (a) time –displacement history (b) phase portrait (c) Poincaré map 
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SUMMARY 

The chaotic motion of a bimetallic circular plate with transverse periodic excitation was 
investigated considering the effect of large deflection and uniformly stationary temperature. 
The theoretical critical conditions for bifurcations and chaos were determined and the complex 
aperiodic behaviors were simulated. The results identify conditions for which chaotic motion 
occurs in bimetallic plates. 

The present work can easily be degenerated into the chaotic analysis for heated thin 
single plates or expanded to the similar study for heated multi-layered plates. 
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