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Abstract
The planar impact with friction of kinematic chains with an external surface is presented in
this study. The links are rigid and the joints have no clearance. There are multiple impacts at
the end points of the kinematic chain during the dynamical process. The force-deformation
equation contains a damping term to reflect dissipation in the contact area. Planar collisions
of a two-link chain with two contact points are numerically studied to compare the outcomes.

INTRODUCTION

The subject of impact is of great interest for scientists and engineers in the area of robotics.
The goal is to develop methods that can predict the behavior of links after collisions. A colli-
sion between two bodies is a contact event that occurs at a common point of contact. Analyti-
cal solutions (obtaining post impact velocities in terms of pre-impact velocities) of rigid body
collision problems in classical mechanics are formulated in terms of two principles: Newton’s
law of motion and Coulomb’s law of friction. In addition, the solutions require the knowledge
of two material constants: coefficient of friction and coefficient of restitution.

Kane and Levinson [6] showed that Newton’s approach may predict erroneous energy
results in rigid body problems when friction is present. Keller [7] formulated a three dimen-
sional differential approach that resolved the energy paradox by using the kinetic definition of
the coefficient of restitution. An important recent contribution to the area was the definition
of a new coefficient of restitution (the energetic definition) by Stronge based on the internal
dissipation hypothesis (Stronge [9]).

The collisions of kinematic chains with external surfaces were considered in Hurmuzlu
and Chang [3]. They formulated an algebraic solution of impacts of planar multi-body system
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with two contact points based on the kinematic formulation of the coefficient restitution (with
an energy correction scheme proposed in Brach [1]).

Hurmuzlu and Marghitu [4] studied rigid body collisions of planar kinematic chains
with multiple contact points. Marghitu and Hurmuzlu [8] presented a three dimensional so-
lution scheme based on the differential formulation of impact equations that incorporates the
three definitions of the coefficient of restitution is presented.

In this article first the impacting system and the related coordinate frames are presented
and then, the impulsive forces are presented. A simplified two link chain with two contact
points is numerically studied. The focus is on the relation between the post and pre-impact
energies, slippage and rebounds at the contact points.

IMPACTING SYSTEM

A general representation of the kinematic chains that are considered here is shown in Fig. 1.
Consider the n interconnected rigid links B1, ..., Bn. The kinematic chain has frictionless
revolute joints. The end Aj , j = 1, 2, . . . , k of the chain collides with the surface Sj , j =
1, 2, . . . , k. The collision at Aj leads to several outcomes depending on the initial conditions,
the contact force and the coefficient of friction µj at the contact point Aj among the surface
and the chain. The coordinate axes are aligned with surface S0, whereas surfaces Sj are taken
at angles θj with the horizontal. The normal and tangential directions at Aj are defined as
shown. The contacting ends rebound as a result of the collision. The link B1 has one rotational

Figure 1: A general representation of an kinematic chain with frictionless revolute joints
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and two translational degrees of freedom. Bodies Bi, i = 2, 3, . . . , n have rotational joints,
and therefore have one relative degree of freedom each. Let R[ı, , k] define a fixed inertial
reference frame and Ri a set of reference frames attached to bodies Bi. The coordinate axes of
R are aligned with the plane surface S0. We express by bi1, bi2 and bi3 = k, (i = 1, 2, ..., n)
the corresponding mutually perpendicular unit vectors along the axis of Ri. Let nj be the unit
vector of the normal to the surface Sj and directed from Sj into the contacting link. Let tj be
unit vector in the common tangent plane to the surface Sj and the contacting link satisfying:
nj = tj × k.

The orientation of each body with respect to its lower adjacent body is defined through
the angles φi where i = 1, . . . , n. The relative translations of body B1 is given by d1 and d2.
The generalized coordinates for the system can be expressed as the vector

q = {d1, d2, φ1, φ2, φ3, . . . , φn}T (1)

The unit vectors of an axis frame of a body can be expressed as a linear combination of the
unit vectors of the axis frame of an adjacent body as:

Ri = Si i−1 Ri−1, (2)

where Ri−1 is the rotational matrix. The angular velocity of Bi in R can be written as

ωi+2 = uik, (3)

and the vector of generalized speeds is given by

u = {u1, u2, u3, u4, u5, . . . , un, un+1, un+2}T (4)

where, u1 = ḋ1 and u2 = ḋ2. The velocity of the Aj end is

vj = vn
j nj + vt

jtj (j = 1, . . . , k), (5)

where, vn
j is the normal and vt

j is the tangential velocity. The vector of contact forces is given
by

F =
{
F t

1, F
n
1 , . . . , F t

k, F
n
k

}T (6)

where, Fn
j is the normal contact force and F t

j is the tangential contact force. The impulses at
the contact points are obtained by integrating Eq. (6), which gives:

τ =




τ t
1

τn
1
...
τ t
k

τn
k




=




∫ t
0 F t

0dt∫ t
0 Fn

0 dt
...∫ t

0 F t
kdt∫ t

0 Fn
k dt




(7)

where,
τ j = τ t

jtj + τn
j nj (j = 1, ..., k) (8)
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IMPACT FORCES

The normal impulsive forces, Fn
j , j = 1, 2, . . . , k, are determined by combining the classical

Hertzian contact theory (Goldsmith [2]) and elastic-plastic indentation theory (Johnson [5]).
At a contact point there is a linear relationship between the plastic deformation qpj and the
normal contact force Fn

j , as follows

qp
j = η(Fn

j − F c
j ). (9)

In the above equation the coefficient η has the following expression

η =
1

2πRjH
, (10)

where H characterizes the plastic property of the material and can be approximate with the
Brinell hardness, and Rj is the radius of the end impacting link. The critical value of the
impact force F c

j , can be expressed in terms of the yield stress σy

F c
j =

8π3R3
jσ

3
y

k2
1

, (11)

where
k1 =

2
3(1− ν2)

E
√

Rj . (12)

The Poisson’s ratio is ν and the Young’s module is E.
The elastic deformation qe

j as a function of the contact force is described by the Hertz’s law

qe
j =

(
Fn

j

k1

)2/3

, (13)

and the total normal deformation for the elasto-plastic impact is the sum of elastic and plastic
deformation

qj = qe
j + qp

j =
(

Fn
j

k1

)2/3

+ η(Fn
j − F c

j ). (14)

The critical deformation qc
j corresponds to the force F c

j , and the maximum deformation qm

appears when the maximum force Fm
j is applied. The impact force at the impact point is

Fj = Fn
j n + F t

j t, (15)

where F t
j is the friction force.

The possible cases of motion at the contact point are

I. the end is slipping: F t
j = −µ Sign(vt

j)F
n
j . The experimental data show that a dry friction

coefficient can be used to model the impact of the links.

II. the end is not slipping: vt
j = 0 subject to

∣∣∣F t
j /Fn

j

∣∣∣ ≤ µj .

Contact force was determined and examined. When a link has a nonzero tangential
velocity at the onset of the collision vt 6= 0, there will be a phase of slip.
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APPLICATION

In this section the impact problem of a two link chain, link 1 and link 2, with two contact
points (Fig. 2) is presented. A cartesian reference frame xOy is chosen, a mobile reference
frame x1Oy1 is attached to the link 1, at point A, and a mobile reference frame x2Oy2 is
attached to the link 2, at point B. The lengths of the links 1 and 2 are l1 = l2 = l = 153
mm. The masses of the links 1, and 2 are m1 = m2 = 0.03871 kg. Also, for this application
α = β and θ = φ. The mass moments of inertia for the links 1 and 2 are IC1 = 0.19712
and IC2 = 76.53893. The contact surface S is horizontal, and the chain includes slender
members (steel bars with a density of 7801.0 kg/m3, each with a diameter of 6.35 mm) that are
connected with a rotational joint E. The velocity of the point A (impacting point on link 1) on
the Ox and Oy axes is denoted by vAx and vAy. The velocity of the point B (impacting point
on link 2) on Ox and Oy axes is denoted by vBx and vBy. The initial angular velocities of the
link 1, and link 2 are ω1 = ω2 = ωin. The kinetic energy of the link 1 is T1. The kinetic energy
of the link 2 is T2. The total kinetic energy for the two link chain is T = T1 + T2. Friction
is negligible for the rotational joint M . The coefficient of static friction is µs = 0.7 and
the coefficient of dynamic friction µk = 0.57 (for dry steel). The gravitational acceleration
g = 9.807 m/s2 is considered. Two sets of simulation shown in Fig. 3 and Fig. 4 were

Figure 2: Impact of two link chain with two contact points

conducted to determine the kinetic energy denoted by T , angular velocity denoted by ω, and
the Ox and Oy velocity of the point A denoted by vAx and vAy, for the two link chain before
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Figure 3: Impact of two link chain with an initial angular velocity ωin = 1 m/s

and after the impact. For each simulation the two link chain is released such as the distance
between the pin joint E and the surface S is d=constant.

The the distance d was considered d = 200 mm. When released, link 1 and link 2
have an initial angular velocity ωin = 1 deg/sec for the first simulation set, and an angular
velocity ωin = 5 deg/sec for the second simulation set respectively. Three different values for
the impact angle θ have been taken into consideration for each simulation set. The values of
the impact angle θ are θ = θ1 = 45◦, θ = θ2 = 52.5◦, and θ = θ3 = 60◦.

Results of the simulation are depicted in Fig. 3 and Fig. 4. In the figures, the symbol
“×” was used to shown the values obtained immediately before the impact and the symbol
“•” was used to shown the values obtained immediately after the impact.

For the first simulation set (ωin = 1 deg/sec, θ = θ1, θ2, θ3) the Ox velocity vAx vs.
the impact angle θ, Oy velocity vAy vs. the impact angle θ, the angular velocity ω vs. impact
angle θ, and the kinetic energy T vs. impact angle θ, for post and pre-impact were computed
and plotted in Fig. 3.a, Fig. 3.b, Fig. 3.c, and Fig. 3.d, respectively.

For the second simulation set (ωin = 5 deg/sec, θ = θ1, θ2, θ3) the same data for
post and pre-impact were computed and plotted in Fig. 4.a, Fig. 4.b, Fig. 4.c, and Fig. 4.d,
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Figure 4: Impact of two link chain with an initial angular velocity ωin = 5 m/s

respectively. The Ox velocity vAx, Oy velocity vAy, angular velocity ω, and kinetic energy
T , for post-impact (po.im.) and pre-impact (pr.im.), for the first and second simulation sets
are given in Table 1.

SUMMARY

This paper considers the multi-contact, rigid body collisions of kinematic chains in the pres-
ence of friction. The solution techniques are based on the differential formulation of the
equations of impact with the normal impulsive forces determined by combining the classi-
cal Hertzian contact theory and elastic-plastic indentation theory.

Numerical results of the collisions of a two link chain, with two contact points in the
presence of gravity have been presented. Dynamic response characteristics as kinetic energy
T , angular velocity ω, vAx and vAy velocities, for the the post and pre-impact have been
computed.
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Table 1: vAx and, vAy velocity, angular velocity ω, and kinetic energy T

Initial Data vAx [m/s] vAy [m/s] ω [deg/s] T [N−m]
1 deg/s; 45◦; pr.im. 1.52729 45.62396 0.95603 0.07226
1 deg/s; 45◦; po.im. −0.57063 −9.28193 −0.05998 0.00324
1 deg/s; 52.5◦; pr.im. 1.12426 42.97673 0.96172 0.06379
1 deg/s; 52.5◦; po.im. −0.59133 −8.92203 −0.05193 0.00362
1 deg/s; 60◦; pr.im. 0.70064 39.93305 0.97365 0.05344
1 deg/s; 60◦; po.im. −0.60199 −8.46615 −0.04012 0.00416
5 deg/s; 45◦; pr.im. 11.40812 56.60626 3.92947 0.08753
5 deg/s; 45◦; po.im. −0.86462 −13.66523 −1.86982 0.00299
5 deg/s; 52.5◦; pr.im. 8.013201 54.87833 4.02182 0.07796
5 deg/s; 52.5◦; po.im. −0.99816 −12.91071 −1.50102 0.00302
5 deg/s; 60◦; pr.im. 4.42944 52.29797 4.35933 0.06051
5 deg/s; 60◦; po.im. −1.14885 −11.69617 −0.95820 0.00307
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