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Abstract 
Propagation of acoustic waves in thin-walled two-layered elastic tube with compressible 
polymeric liquid is investigated. It is assumed that the waveguide consists of two thin circular 
cylindrical shells with different thicknesses, made from different isotropic elastic materials. 
The layers of the shell are supposed to be rigidly jointed. Dynamics of the tube wall in the 
wave is described within Kirchhoff-Love approximation, formulated for a layered cylindrical 
shell. Dynamics of polymeric liquid in the tube is treated within quasi-one-dimensional 
approach; the liquid rheology is described by linear hereditary rheological equation. The 
sound dispersion in the waveguide is studied in a low frequency range. Numerical analysis 
has shown strong influence of the liquid rheological properties and parameters of the layered 
shell on dispersion and attenuation of pressure signals. 

INTRODUCTION 

The problem of acoustic wave propagation in cylindrical layered structures has 
important engineering, biomedical and technological applications [2], [4], [7]. One of 
them can be found in the field of acoustic measurements, where integrated thin walled 
acoustic tube devices were developed and demonstrated to be an attractive sensor 
candidate [15]. The actual configuration of a tube sensor device is often a two-layer 
composite shell, which supports motivation for systematic study of sound waves 
characteristics in layered thin walled tubes. Another widespread application of the 
layered waveguides is connected with using of different anticorrosion coatings, which 
can change essentially the acoustic properties of the system. Results on acoustics of 
cylindrical layered shells are reported in [3], [10]. Sound transmission through 
layered shells with viscoelastic layers was studied in [6].  

The topic of acoustic wave propagation in liquid-filled thin walled cylindrical 
tubes is widely covered in the literature. However, it has been mostly related to the 
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case of ideal and pure viscous fluids. The results relating to liquids with more 
complex rheology, particularly, viscoelastic fluids, can be found in [12], [13], [14]. 
Here approach similar to [12] is used for studying more general configuration of the 
waveguide, namely, infinite cylindrical shell, made from two thin elastic layers. The 
shell is filled by compressible viscoelastic liquid (solution of high polymer in a low 
molecular solvent). The subject of the paper is the low frequency sound propagation 
in the system.  

PROBLEM FORMULATION 

Dynamic equations for two-layered thin circular cylindrical shell are written below 
for the case when the layers are made from different isotropic elastic materials and 
the package dynamics can be described within Kirchhof-Love approximation [1]. 
These equations in an axisymmetrical case have the form: 
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Here u  and  are longitudinal and radial displacements of the internal surface of the 
shell, contacting with liquid, which is chosen for a coordinate surface [1]. The layered 
tube is related to cylindrical coordinate system with the origin on the tube axis and 

w

rx ,  are the longitudinal and radial coordinates, correspondingly; R  is the radius of 
the coordinate surface;   and   - the thicknesses of the internal and external 
layers, respectively; 

1h 2h
ζ  is the non-dimensionless  axial coordinate )/( Rx=ζ ;            

pΔ  - contact pressure, equal to normal stress in the liquid at the pipe wall; t  - time; 
 are rigidities of the layered shell, specified according to the 

formulas [1]: 
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where the quantities  are defined as follows:  )2(
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In (4) ,  iE iν  are Young modules and Poisson coefficients of the layers (index  
corresponds to the internal  layer and 

1=i
2=i  - to the external one);  sρ  is the reduced 

density of the layered shell, introduced by the formula [1]: 
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Here 1ρ  and 2ρ  are the layer's densities.  

The equations (1), (2) are rewritten in dimensionless form, using the relations  
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and their solution is searched in the form { } { } ([ ])ζτΩ kipuupuu cc −= expˆ,ˆ,ˆ,, 2121 , 
where Ω  and  k are dimensionless frequency and wave number, respectively. It leads 
to the following equations for the complex amplitudes:  
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To find the contact pressure here it is necessary to solve the internal dynamic problem 
for the liquid with the boundary conditions at Rr = : 
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Here  are the axial and radial velocity components of the liquid;  is the 

pressure in liquid;  - equilibrium pressure within the tube;  
rx vv , fp

0p rrτ  - the normal 
component of the stress tensor deviator in liquid. 

Linearized equations of non-stationary flow of polymeric liquid in the tube are 
formulated within quasi-one-dimensional approach [12]. The equations of momentum 
and mass balance for liquid are averaged along cross-section of the tube and written 
in dimensionless form, using the variables: 



S. P. Levitsky, R. M. Bergman, and J. Haddad 

( ) ( ) RrrRRrxrw
fo

vRtvpRVtVpPP == ⋅==−==−= )(/;/;1;/;1/ 0000 ττ
ρ
ρρ  

( )
t
uRtu
∂
∂
⋅= /02

& ;     ∫∫∫ ===
r

f

r

f

r

x drr
R

drrp
R

PdrrV
R

V
0

2
0

2
0

2

2;2;2 ρρ       (8)   

 
where fρ , 0fρ  are the liquid density and its equilibrium value, respectively; xrτ  is 

the tensile stress in the liquid; and 
t
uvV xx ∂
∂

−=  is the relative velocity. Then the 

equations for the complex amplitudes, introduced by the relations 
{ } { } ( )][expˆ,ˆ,ˆ,ˆ,ˆ,,,, ζτΩτρτρ kivVPvVP wRwR −= , take the form [12]:  
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Here    is the sound speed in the liquid and fc 0/ fs ρρκ = .  

To close the boundary value problem, formulated above, it is necessary to find 
the tensile stress amplitude wτ̂  at  the shell boundary in  (9). Following [12], the non-
stationary friction force at the tube wall can be found from solution, describing 
pulsating flow of incompressible polymeric liquid in a rigid tube with the same 
radius. In this case the small input of the cross effect of the liquid's rheology and 
compressibility [11] and also small influence of the tube's radial deformations on the 
losses, are neglected. The result has the form [12]: 
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Here  is the dimensionless complex dynamic module of the liquid; *G svη  - the 
Newtonian solvent viscosity; )(θF  - the spectrum of relaxation times θ ; ,  are 
Bessel functions of the first kind of the zero and first order, respectively. The contact 
pressure amplitude   is found from the boundary condition (7):  

0J 1J

cp̂



ICSV13, July 2-6, 2006, Vienna, Austria 

12 ˆ2ˆ
3

21ˆ uiP
c

ip
f

c ηΩηκΩ
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= ;        Rtcc ff /0=                          (13) 

DISPERSION EQUATION AND NUMERICAL RESULTS 

The dispersion equation for sound waves in the waveguide follows from (6), (9)-(11), 
(12) and (13). It can be simplified in the case of long waves ( k  << 1), when the 
bending stresses in the shell are small with respect to membrane ones [5], with 
account for the following inequalities: . The result has 
the form: 
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Note that in the case of a single-layered shell the dispersion equation (14) coincides 
with the dispersion equation, studied in [12]. 

Equation (14) was studied numerically in the low frequency range for a discrete 
relaxation spectrum of the liquid 
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Here z(α1) is the Riemann zeta function of the spectral distribution parameter α1                  
(θk = θ1/ 1kα ) and pη  - non-dimensional Newtonian viscosity of the polymeric 
solution. Newtonian viscosity of the solution was calculated from Martin relation [11] 

)(1 βkexp/ Msvp βηη +=  with Mk = 0.4 and sPasv ⋅= 1.0η . The relaxation times θk 

were found according to Rouse theory (α1 = 2) from the equation 
)exp(608.01 βMkAsvηθ =  with A = 500 (the non-dimensional parameter               

A = [η]Mp0/RG, where ][η - characteristic viscosity of the solution, M - molecular 
mass of the polymer, RG - universal gas constant, β - reduced polymer concentration).  
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The results of simulations for rheological description of the liquid, described 
above, are presented on the Figure 2. The graphs on the Figure 1 correspond to the 
following fixed values of the rheological parameters: ηp = 0.5Pa⋅s, svη  = 0.5⋅10-3Pa⋅s,    
θ1 = 10-2 s,  α1 = 2 (these values were estimated for 2.5% solution of polystyrene with 
M = 2⋅106 in toluene [11]). For all curves ρf0 = 850 kg/m3 and 1500=fc m/s. Curves 
1-3 on all figures correspond to three pairs of geometrical parameters of the layered 
shell: 01.0,09.0 21 == εε ; 05.0,05.0 21 == εε ; 09.0,01.0 21 == εε ; respectively 
(for all plots 1.021 ==+ constεε ). It was assumed that the internal shell is 

aluminium made ( a, 10
1 107 ⋅=E P 34.01 =ν , 27001 =ρ  kg/m3) and the external one 

is made from polyamide ( a, 9
2 103 ⋅=E P 42.02 =ν , 11002 =ρ  kg/m3). Note that 

polyamide, as usually all polymeric materials, demonstrate frequency dependent 
behaviour at periodic loading. However, in the low frequency range this dependency 
can be neglected [9], and polyamide can be described by pure elastic model with 
constant Young module and Poisson coefficient, given above.  

 

            
 

Figure 1 – Dimensionless sound speed and attenuation in the waveguide versus frequency 

 
 The plots for non-dimensional sound speed  C = Ω /Re{k} and attenuation of 
sound  χ = - Im{k} were computed from the equation (14).  The lines  in the 
Fig. 1, 2 correspond to pure solvent (

2,2 ′′′
η  = svη )  and pure viscous liquid with viscosity 

of the solution (η  = pη ), respectively; the other parameters are the same as for the 
plot 2. 

As it follows from the Figure 1, the changes in the shell structure (variation of 
the 21, εε  values) influence not only the dispersion but also the attenuation of the 
wave. For stiffer shell the sound wave velocity is larger and attenuation smaller than 
for more compliant one. The dispersion sign in the studied frequency range is 
positive, which is explained by transition from viscosity to inertia dominated flow 
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regime in the tube. Note that positive dispersion of sound in a narrow tube in the low 
frequency range was directly observed in [8]. Numerical data show also that for the 
same values of the system parameters the sound speed in a pure viscous liquid with 
viscosity pη  is essentially less than that one in a similar viscoelastic liquid, which is 
explained by the frequency dependent dynamic viscosity of polymeric solution. 
 

         
 

Figure 2 – Dimensionless sound speed and attenuation in the waveguide versus reduced 
polymer concentration 

The plots on the Figure 2 illustrate the influence of the polymer concentration 
on the sound speed and attenuation in the waveguide. It can be concluded that effect 
of polymer concentration on the wave velocity is more pronounced in the case of a 
stiffer shell (with relatively thin polyamide coating). In any case the growth of the 
reduced polymer concentration leads to increase of the sound attenuation and slows 
the wave - the result is explained by the losses increase with β. 

SUMMARY 

The model of low frequency sound propagation in two-layered elastic cylindrical 
shell with viscoelastic polymeric liquid inside has been developed and investigated. 
The hydraulic (quasi-one-dimensional) approach was used for solution of internal 
hydrodynamic problem in order to account for the frequency dependent dissipation at 
liquid-shell interaction in the wave. The dispersion equation was studied numerically 
for the shell, consisting from aluminium and polyamide layers with different 
thicknesses. It was shown that the shell composition influence not only the dispersion, 
but also the attenuation of the wave. For a stiffer shell the sound wave velocity is 
larger and attenuation smaller than for more compliant one. The effect of polymer 
concentration has been studied also; it was shown that growth of reduced polymer 
concentration leads to increase of the sound attenuation and slows the wave.  
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