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Abstract 
A reduced order model is developed for low frequency, fully coupled, undamped structural 

acoustic analysis of interior cavities, backed by flexible structural systems. The reduced order 

model is obtained by applying a projection of the coupled system matrices, from a higher 

dimensional subspace to a lower dimensional subspace, whilst preserving some essential 

properties of the coupled system. The basis vectors for projection are computed efficiently 

using the block Arnoldi algorithm, which generates an orthogonal basis for the Krylov 

subspace. Two computational test cases are analyzed, and the computational gains and the 

accuracy compared with the direct method in ANSYS. It is shown that reduced order model 

results in a very significant reduction in simulation time, while maintaining the desired 

accuracy of the state variables under investigation. The method could prove as a valuable tool 

in the analysis of complex coupled structural acoustic systems, and their subsequent 

optimization or sensitivity analysis, where, in addition to fast analysis, a fine frequency 

resolution is often required.  

INTRODUCTION 

In a modern passenger vehicle or a commercial airplane, the noise, vibration and 

harshness (NVH) performance is one of the key parameters which the customer uses 

to assess product quality. In order to gain competitive advantage, manufacturers are 

striving to reduce NVH levels. As a result, design engineers often seek to evaluate the 

low frequency NVH behaviour of automotive/aircraft interiors using coupled finite 

element-finite element (FE/FE) or finite element-boundary element (FE/BE) 

discretized models. Due to the coupling between the fluid and structural domains in 

the coupled FE/FE formulation, the resulting mass and stiffness matrices are no 

longer symmetrical. With wavelengths decreasing for increasing frequency, the 

model size drastically increases with frequency. This presents as a major problem 

where optimization is required, especially when there are a large number of design 
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variables to be optimized. Therefore, generation of compact models, for fast coupled 

structural acoustic analysis is of great interest to the NVH community. 

 

The two most popular approaches currently used to reduce the computational time of 

such coupled problems are the mode superposition and the component mode 

synthesis (CMS) method. The reader is referred to [1], for a review of other 

approaches to reduce computational time. More recently, however, model order 

reduction (MOR) via implicit moment matching, has received considerable attention 

among mathematicians and the circuit simulation community [2, 3]. It has been 

shown in various engineering applications [4, 5] that the time required to solve 

reduced order models via MOR is significantly small when compared to solving 

original higher dimensional model, whilst maintaining the desired accuracy of the 

solution. The aim of MOR is to construct a reduced order model, from the original 

higher dimensional model, which is a good representation of the system input/output 

behavior at certain points in the frequency domain. The reduction is achieved by 

applying a projection from a higher order to a lower order space using a set of Krylov 

subspaces, generated by the Arnoldi algorithm. Additionally, the reduced model 

preserves certain essential properties such as maintaining the second order form and 

stability.  

 

The paper focuses on the application of such Krylov based MOR techniques to 

undamped, fully coupled structural acoustic problems. An open source software 

mor4ansys [10] is used to generate the reduced order model from an ANSYS higher 

dimensional model. The harmonic simulation of the reduced order model is 

performed in the MATLAB/Mathematica V5.0 environment. It is shown that the 

reduced order model speeds up the simulation by orders of magnitude, without any 

significant loss of solution accuracy. 

MODEL ORDER REDUCTION FOR SECOND ORDER SYSTEMS 

After discretization in space of a general mechanical system model, one obtains a 

system of second order ordinary differential equations in matrix form as follows: 

 

)()()()( tFutKxtxCtxM =++ &&&                                                                                     (1) 

)()( txLty T=         

                                                                          

Where (t) is the time variable, x(t) is the vector of state variables, u(t) is the input 

force vector, and y(t) the output measurement vector. The matrices M, C and K are 

mass, damping and stiffness matrices, F and L are the input distribution matrix and 

output measurement matrix at certain points respectively. A harmonic simulation, 

assuming {F} = F0 e
iω t

 and ignoring damping in (1) yields: 
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Where, ω  denotes the circular frequency, and, }{x , }{F denote complex vectors of 

state variables and inputs to the system respectively. The idea of model reduction is to 

find a lower dimensional subspace Nxn
V ℜ∈ , and, 
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ε+= Vzx  where, n
z ℜ∈ , n << N                                                                           (3) 

 

such that the time dependent behaviour of the original higher dimensional state vector 

x  can be well approximated by the projection matrix V in relation to a considerably 

reduced vector z  of order n with the exception of a small error ε N
ℜ∈ . Once the 

projection matrix V is found, the original equation (2) is projected onto it. The 

projection produces a reduced set of system equations, in second order form, as 

follows: 
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 Where the subscript r denotes the reduced matrix and: 

 

MVVM T

r = , KVVK T

r = , CVVC T
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r = , LVL T

r = . 

 

It is worth noting that )()( ωω yyr ≈ . Due to its low dimensionality, the solution to 

(4) is much faster than the original higher dimensional model. The input and output 

vectors maintain the same size as (2).  There exist several methods to choose V. In 

this work, we choose the projection matrix V to be a Krylov subspace in order to 

provide the moment matching property [2, 3].  

 

Model order reduction for coupled structural acoustic systems: 

 

For a coupled structural acoustic case, we start off from Cragg’s pressure formulation 

[8]: 
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Where, Ms is the structural mass matrix, Mfs is the coupled mass matrix, Ma is the 

acoustic mass matrix, Cs is the structural damping matrix, Ca is the acoustic damping 

matrix, Ks is the structural stiffness matrix, Kfs is the coupled stiffness matrix, Ka is 

the acoustic stiffness matrix, Fs is the structural force vector, y(t) the output 

measurement vector and u, p are the displacements and pressures at nodal co-

ordinates respectively. Ignoring damping for the structure and fluid, the coupled 

equations become: 
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It can be seen that (6) is similar to (2). In this case, the approximation becomes:  
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Combining (5) and (7), the transfer function of the system H(s) = ( Y(s) / U(s) ) via 

the Laplace transform can be written as: 
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Ignoring damping, and expanding (8) using the Taylor series about 0=s results in: 
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By matching some of these moments of the higher dimensional system about s=0, the 

reduced order model can be constructed, as it directly relates the input to the output of 

the system. Theoretically, any expansion point within the frequency range of interest 

can be used, and a real choice depends on required approximation properties. 

However, explicitly computing such moments tends to be numerically unstable [2, 3]. 

So we try to implicitly match these moments of via the Arnoldi process. Su and Craig 

[6], showed that if the projection matrix V is chosen from a Krylov subspace of 

dimension q,           
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q
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then, the reduced order model matches q+1 moments of the higher dimensional 

model. Loosely speaking, if the q
th

 vector spanning the Krylov sequence is present in 

matrix V, we match the q
th

 moment of the system. The block vectors K
-1

F and K
-1

M 

can be interpreted as the static deflection due to the force distribution F, the static 

deflection produced by the inertia forces associated with the deflection K
-1

F 

respectively. 

THE ARNOLDI ALGORITHM 

To avoid numerical problems while building up the Krylov subspace, an orthogonal 

basis is constructed for the given subspace. This is done using the block Arnoldi 

algorithm. Given a Krylov subspace Kq (A1, g1 ), the Arnoldi algorithm finds a set of 

vectors with norm one i.e. that is orthogonal to each other, given by: 

 

V
T
V = I       and   V

T
A1

 
V = Hq                                                                                  (11) 

 

Where qxq

qH ℜ∈  is a block upper Hessenberg matrix and qxq

qI ℜ∈ is the identity 

matrix. Figure: 1 describes the implemented algorithm, which is used to generate the 
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Arnoldi vectors for the coupled structural acoustic system. For multiple inputs, the 

block version of the algorithm can be found in [3].  In this case:  
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The discussion of the block version of the algorithm, which is used to generate the 

Arnoldi vectors for the coupled structural acoustic system  (Multiple input, Multiple 

output) is quite involved, and the reader is referred to [3] for a detailed discussion. It 

can be seen from the algorithm, that in each step, one vector orthogonal to all 

previously generated vectors are constructed and normalized. Due to the iterative 

property of the algorithm, it is possible to produce reduced order model of lower 

dimension than initially specified, by just discarding the columns in matrix V and 

subsequently the rows and columns of the reduced matrices.   

 

Algorithm: 1: 

Input: System Matrices Ksa,Msa, Fsa, L and n (number of vectors), expansion point 2/)( BEs ωω +=  

Output: n Arnoldi vectors 

0. Set gvi =  

1. For :,1 doni →=  

        1.1  Deflation check: ||||1, iii vt =−  

        1.2  Normalization: 1,

*
/ −= iiii tvv  

        1.3  Generation of next vector: 1

*

1 Avvi =+  

        1.4  Orthogonalization with old vectors: for j=1 to i: 

                   1.4.1 
*

11, += i

T

jj vvt  

                   1.4.2 jijij vtvv ,

*

1

*

1 −= ++  

2. Discard resulting qH , and project LFKM sasasa ,,,  onto V to obtain reduced system matrices 

rRsaRsaRsa LFKM ,,,  where the subscript Rsa represents the reduced structural acoustic matrices. 

Figure: 1: Arnoldi Process [2] [3]. 

NUMERICAL TEST CASES 

Test Case - 1: 

 

The first example we consider in this paper is an academic test case, rather than an 

industrial application. The test model is a 1m x 1m clamped undamped aluminium 

plate backed by a rigid walled rectangular cavity of dimension 1m x 1m x 1m. All the 

other sides of the cavity are assumed to be rigid. A total of 8400 elements were used 

for the model. A force excitation of 1N is applied on one of the nodes on the plate as 

shown in Figure: 2(a). The coupled equations are solved using two approaches: (a) 

The direct method and (b) MOR via Arnoldi.  35 vectors were generated using the 

Arnoldi algorithm as described in the previous section. The reduced order model was  
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Figure 2 – (a) Top: Coupled FE model 

   (b) Bottom: Noise Transfer Function 
        Figure 3 – (a) Top: Receptance  

(b)Bottom: Noise Transfer Function 

set up and solved in Matlab/Mathematica V5.0 environment. The displacement 

amplitudes of the plate and the noise transfer function (Pressure/Force) computed on 

certain points inside the fluid domain are specified as outputs for the analysis. The 

transfer functions are shown from Figure: 2(b), 3(a) and 3(b). 

 

Test Case - 2: 

 

A model structure, made of simple beams and plates was manufactured to test new 

algorithms and techniques. The structure was modelled using a top-down modelling 

approach. The structural model was divided into seven areas. Four of these areas: one 

corresponding to the vehicle roof, firewall, floor pan and back plate, were meshed 

using four noded quadrilateral shell elements with six degrees of freedom at each 

node. A total of 3706 shell elements were adequate to capture the dynamic behaviour 

of the structure. The acoustic model was modelled using eight noded acoustic brick 

elements with one pressure degree of freedom at each node. Two faces of the acoustic 

model were assumed to be fully reflective i.e. rigid walls. The coupled model was 

excited at two locations as shown in Figure: 4(a). 170 vectors were generated using 

the multiple input multiple output Arnoldi algorithm. The noise transfer functions are 

shown from Figure: 4(b), 5(a) and 5(b). All computations described in this paper 

were performed on a Pentium 3GHz 2GB RAM machine. 

COMPUTATIONAL TIMES 

To evaluate the computational gains achieved by using reduced order models via the 

Arnoldi process, the computational times required to solve the higher dimensional 

ANSYS model and the reduced order model are compared. Table: 1 shows the 

computational time required for test cases 1 and 2. 

 
Model Elements DOF's ANSYS Direct     MOR via Arnoldi Reduction 

TC
1 

   8400 11427        2906 s             27.8 s    99.04 % 

TC
2 

  14220 29413      16530 s           169.4 s    98.97 % 

Table 1 – Computational Times; TC
1
: Test Case-1; TC

2
: Test Case-2. 
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Figure 4 – (a) Top: Coupled FE model 

   (b) Bottom: Noise Transfer Function 

Figure 5 – (a) Top: Noise Transfer Function 

(b) Bottom: Noise Transfer Function 

For the reduced order model, the computational time is a combination of four steps 

(a) Running a Stationary solution and generating matrices (b) Reading matrices and 

generating of Arnoldi vectors (c) Projection to second order form and (d) Simulation 

of the reduced order model. The spilt computational times for test case 1 and 2 are 

shown in Table: 2. It can be seen that significant speed up is achieved by the use of 

model order reduction. Another interesting feature of the Arnoldi process is that, the 

computational times do not depend on the frequency resolution for the reduced order 

model, while, an almost linear increase can be observed with increasing substeps for 

the higher dimensional ANSYS model. This is particularly useful, for complex 

structural acoustic systems, where a higher frequency resolution is often desired. 

 

Model 

ANSYS 

Stationary 

Read Matrices , Arnoldi  

     Vector Generation 

Projection of 

   Matrices 

Reduced model 

    Simulation 

Total: MOR via 

      Arnoldi 

  TC
1 

     6 s 21.3  s           (35 Vectors)      0.4 s          0.2 s         27.8 s 

  TC
2 

     4 s 144.7 s        (170 Vectors)    14.7 s          6 s       169.4 s 

Table 2 – MOR Split Computational Times; TC
1
: Test Case-1; TC

2
: Test Case-2. 

SUMMARY 

A new method to develop efficient reduced order model for fully coupled structural 

acoustic problems has been outlined. The basis vectors for model reduction are 

computed by applying the Arnoldi algorithm, which computes the projection vectors 

spanning the Krylov subspace, to match the maximum number of moments of the 

system. The two test cases used in this paper, show that good approximation 

properties can be obtained by projecting the higher dimensional system to a lower 

dimension and matching the low frequency moments of the system. In the test cases 

shown, the moments are matched at approximately half of the analysis 

range 2/)( BEs ωω += . The choice of s is often an open question. If a Taylor series 

expansion is considered around a higher frequency, a reduced order model could be 

obtained with better approximation properties around that frequency range. In 

addition to this, a reduced order model could be calculated, which matches moments 

around several expansion points, with each expansion point requiring a separate 
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factorization. However, for the test cases analyzed in this paper, a single expansion 

point yields very good approximation properties. Figure: 2(b), 3(a), 3(b), 4(b), 5(a) 

and 5(b) indicates that there is almost no difference between results from ANSYS 

calculated and the reduced order model. While there exist several methods to choose 

basis vectors, we have chosen these vectors to span the Krylov subspace. Compared 

to the computing eigen modes and eigen vectors of the system matrices, computing 

vectors spanning the Krylov subspace is much faster and efficient, since a normal 

modal analysis of a complex structural or an acoustic system tends to be 

computationally expensive. In fact, there is no guarantee that the computed modes 

included for the mode superposition via a modal analysis would be enough for the 

time/harmonic analysis, and often an approximate guess of modes within the 2n range  

are computed for projection, n being end frequency [7]. Figure: 2(b), 3(a) and 3(b) 

show that the reduced order model accurately captures the dynamic behaviour of the 

coupled higher dimensional system, indicated by peaks at ~170Hz and ~240Hz, 

which correspond to the acoustic modes of the cavity. Also, a complete 

approximation of the output is guaranteed by the Arnoldi process. Although this has 

not been verified explicitly in either of the test cases, existing literatures show that a 

complete match is specific to the Arnoldi process (e.g. [9]). For both test cases, 25 

outputs were chosen for the analysis, which included both normal displacements on 

the structural portion of the model and pressure levels in the fluid domain. The 

number of vectors needed to accurately represent the system was 35 and 170 for test 

cases 1 and 2 respectively. The difference in the number of vectors needed can be 

attributed to the nature of coupled models itself and its resulting transfer function. It 

is also worth noting that the process of computing the minimum number of required 

vectors can be completely automated. The reduced order modelling framework 

outlined in this paper could serve as an excellent alternative to many other reduction 

techniques, particularly for low frequency vibro-acoustic optimization, where 

reduction of computational time is often sought.  
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