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Abstract

In this paper, the authors present a new structural optimization method based on FE
modeling, modal analysis and an evolutionary optimization algorithm with respect to
dynamic strength and rigidity of structure. The method consists of two optimization
processes in outline. The first process is to find the best topology by evolutionarily
growth of structure. A initial structure having simple and slender shape will be
appropriately available for the optimization. The method can make such an initial
structure grow evolutionarily. The second process is to optimize the best size of the
topologically optimized structure in the first process, according to externally applied
force and load. The method computes some number of natural frequencies and natural
modes, and the deflection of the structure due to externally applied force. The outline
of the algorithm is presented in the form of flowchart at first. A demonstration of a
connecting-rod model is presented under evaluation of not only strength and deflection
but also fatigue durability.

INTRODUCTION

Michell truss in 1904 may be one of very early achievements categorized as
evolutionary structural optimization. It was solved analytically without computer.
Optimum layout problems such as location of voids in structures started in 1970s.
Since 1980’s, the growth of digital computer power has made it possible to develop
various evolutionary structural optimization methods based on numerical analysis for
more practical engineering purposes. Examples are the cellular automata method, the
homogenization method and the bi-directional evolutionary structural optimization
method[1-6]. Most of the papers regarding such methods showed two-dimensional and
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three-dimensional examples being started with initial structures fully filled with
structural elements in design space[1-4]. Roughly describing, resultant structures are
obtained by the removal of a number of unnecessary structural elements from initial
structures although the methods have the function to attach new elements again to the
place where old elements were removed. The bi-directional method was proposed as a
kind of evolutionary structural optimization with the enhancement of attaching new
element process.

This paper presents a new evolutionary structural optimization method for
obtaining light structures under considering double-disciplinary requirements about
statics and dynamics. The method normally starts using an initial structure that is very
simple and slender because we think it is very practical. The simple structures can grow
up to sophisticated structures using comparatively less computational resources than
conventional ones. In static structural optimization, sophisticated structures mean the
light structures having appropriate strength and rigidity against applied external static
forces. Mises yield criterion is used to judge yielding condition in this paper, although
any yield criterion can be available. Structures are reinforced at yielding place by
attaching new finite elements on the local surface areas. On the other hand, appropriate
number of finite elements are removed from the places with some degrees of allowance
to yielding. In dynamic structural optimization, sophisticated structures mean the light
structures having its natural frequencies of interest as closely as possible to design
target frequencies or having those at higher frequencies than required minimum
threshold frequencies. Two Kkinds of sensitivity functions are used for these
optimization objectives in this paper. One is a pseudo sensitivity function about
Rayleigh quotient and the other one is strain energy with respect to the removal and
attachment of elements. Note that good handling of the “mode-switching” problemis a
key point to make a success of dynamic optimization. “Mode-switching” is a
phenomenon that changes the order of natural modes. “Mode-switching” really occurs
when some finite elements are removed from or attached to the objective structures in
evolutionary optimization process. The natural frequency of each mode shape is
strongly affected and changed by the “mode-switching”. Consequently, the
evolutionary optimization often becomes unstable in the case of using only
conventional evaluation parameters. Then, in the present method, the problem is
prevented by the combination of the abovementioned two kinds of sensitivity functions.
In this paper, an integration method based on the abovementioned techniques for the
static and the dynamic optimization is presented because in practice dynamic structural
optimization cannot be realized without consideration of strength. In addition, many
structural parts in machines dynamically move and/or oscillate so that dynamics must
be considered in addition to strength. Therefore, the integration is very important to
develop such methods for practical use. This paper presents a concise explanation of
the method and a example numerical of a connecting rod model for small passenger
car class engines.
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Outline of Theory

Figure 1 is the flowchart of the algorithm. The optimization is subject to three kinds of
constraints. The one is stress constraint, i.e., yield constraint. Mises yield criterion is
applied to the application in this paper. The second one is a deflection constraint. The
deflection at some points of interest in the structure are restricted to have equal or
smaller than maximum allowable designed deflection against external forces. The
third one is natural frequency constraint. Some natural frequencies of interest are
restricted to become equal or higher than thresholds that are set as acceptable minimum
designed frequencies for each. For the most typical case, the first natural frequency is
to be restricted.
\Mises yield criterion is reviewed as

Geq,i = i \/(Gx,i _Gy,i)z +(Gy,i —Gyi )2 +(Gz,i _Gx,i)z +6(T>2<y,i +T§/z,i +T§x,i) (1)
V2

where ¢ and < represent tensile stress and shearing stress respectively, the subscript i
means the element numbering, and the subscripts x, y and z denote three directions of
Cartesian coordinate system. Eq.(1) is used for the judgment of both strength and static
deflection.

For dynamics the following pseudo sensitivity of eigenvalues are used:

Alk‘ | = —’_/lk
Ex =Tk, (2a)

= A |new structure A current structure

Ek +Tk,| (Zb)

/,Lk |new structure N /ftk |CU rrent structure

where L, and E, represent the strain energy and the kinetic energy stored in the
structure in the k-th natural mode respectively, S, and T,, denote the strain energy
and the Kinetic energy stored in element Nol in the k-th natural mode respectively, and
L represents the eigenvalue of the k-th natural mode. Eq.(2a) is used for removing an

element and Eq.(2b) is used for attaching an element. ~ The algorithm is concisely
presented in the form of the flowchart in Fig.1.
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OPTIMIZATION OF A CONNECTING-ROD MODEL

Figure 2 shows an actual connecting rod and its FE model to be optimized. This is the
initial model for the optimization.

Motion analysis of Piston-Crank Mechanism

This analysis is carried out in order to compute the inertia load of the connecting rod.
Piston-crank motion under a constant engine speed is modeled and computed using the
piston-crank model shown in Fig.3. The derivation of the equations of motion is
skipped here because of an orthodox analytical method. Runge-Kutta method is used
for the numerical analysis. Two points of modeling are noted here.

Firing force applied to the piston head is assumed as

F = Prax exp{-a(0 - 6y)}x S 3)

where P is the Force amplitude, 6, is the firing delay angle from 6 =0 with respect to the

crank position. The motion of the piston-crank mechanism generated due to the firing force.
The connecting rod is simply modeled as shown in Fig. 4 for this analysis. Two equivalent
mass M; and M, are firstly expressed by

and My, =M,— (4)

according to the mass equivalence. This simple modeling cannot always represent the inertia
moment equivalence so that a parameter Q is defined and used in this paper to satisfy the

inertia moment equivalence. The parameter is expressed by

ab? ab
Q=Mck2—(McT+McT):Mc(k2—ab) (5)
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Fig. 2 Specimen of Connecting Rod and its FE modeling
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where Mck2 is the real inertia moment about the center of mass of the connecting rod, and

ab*Mc/ L +a’bMc/ L represents the inertia moment of the simple model shown in

Fig.4. The parameter is a compensation parameter about inertia moment. Figure 5
shows an example of the piston-crank mechanism motion and the inertia load analyzed
using the modeling method. This motion analysis is implemented into the evolutionary
optimization. The moment of 50Nm is set as the external moment resistance applied to
the crankshaft. The motion analysis is carried out for the period of 2 cycles of the
crankshaft rotation under the initial condition in which the rotational speed is set
10000rpm and the initial crank angle 6 =-n(rad).

Fatigue Analysis

Fatigue analysis is based on the mean principal stress o, and the stress amplitude o,
which are derived from the maximum principal stress o, and the smallest principal
stress o,,;,. In this study, the maximum principal stresses are obtained in the motion
analysis for two cycles. The instant principal stresses are computed by

I : Inertia moment of crank

Mp : Mass of piston

Mc : Mass of connecting rod

M : External moment resistance
Fb :Axial compressive force in
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Fig.4 Simple modeling of Connecting rod Fig.5 An Example of Motion and Inertia
for motion analysis Load Analysis
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Ox —0O Tyx T2x
Tyy Oy—0 Ty |[=0 (6)
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The mean stress and the stress amplitude are defined by

Oa :(O_max * Omin )/ 2 and o :(O'max ~ Onmin )/ 2 (7)

The fatigue limit o5 is set to be 0.50), where o, is the tensile strength. The safety factor

is set to be 2 for the tensile strength and the true rupture stress. Figure 6 is a fatigue limit chart
about the initial model. The horizontal axis is the scale of the mean stress. The vertical axis is
the scale of stress amplitude. The straight solid line denotes the fatigue limit, which can be
expressed by

OwR Om + 01 04 —0Oyr 0T =0 8

where o1 and o,,r are the real rupture stress and the fatigue limit stress, respectively. The

bended solid line expresses the yield stress. Many small circles represent the stress amplitude
vs the mean stress with respect to the maximum and the minimum principal stress about all
finite elements of the connecting rod model in two cycles of piston-crank motion. Figure 6
shows that fatigue breakdown occurs in the initial connecting rod in this case study condition.

Figure 7 is the schematics of the resultant FE model after 84 iterations of the optimization.
Figure 8 shows the schematics of the cross-sections, which shows the optimized structure is a
hollow structure. Figure 9 is a fatigue limit chart about the optimized model. Table 1 lists the
comparison of the structural specifications between the initial model and the optimized one.
The optimization finds an appropriately good connecting rod model that is lighter and keeps
enough dynamic strength.
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Fig.6 Fatigue limit chart about the initial
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Tablel Structural Specifications

Items Initial Model | Constraints (H) | Opt.Model

— A 298.1 440.3 404.4
% B 336.5 203.8 152.9
% C 1.121 1.691 2.371
g D 0.11013 0.04220 0.04215
i E 568 2437 2830
: E 1988 5101 5153

G 3426 5455 5819

Mean stress [Pa) L 10
A:Mass(kg)

Fig.9 Fatigue limit chart about
the resultant model

B:Largest equivalent stress (Yield stress:363) [Mpa]

C:Safety rate about Fatigue Breakdown

D:Change of the distance between two centers of journal holes [mm]
E:1st Natural Freq. [Hz]

F:2nd Natural Freq. [Hz]

G:3rd Natural Freq. [Hz]

SUMMARY
This paper presented a new evolutionary structural optimization algorithm and a basic
example about optimizing a connecting rod model under the consideration of dynamic
strength, deflection and fatigue constraints. The application demonstrated the validity
of the proposed algorithm.
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