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Abstract 
In this paper, the authors present a new structural optimization method based on FE 
modeling, modal analysis and an evolutionary optimization algorithm with respect to 
dynamic strength and rigidity of structure. The method consists of two optimization 
processes in outline. The first process is to find the best topology by evolutionarily 
growth of structure. A initial structure having simple and slender shape will be 
appropriately available for the optimization. The method can make such an initial 
structure grow evolutionarily. The second process is to optimize the best size of the 
topologically optimized structure in the first process, according to externally applied 
force and load. The method computes some number of natural frequencies and natural 
modes, and the deflection of the structure due to externally applied force. The outline 
of the algorithm is presented in the form of flowchart at first. A demonstration of a 
connecting-rod model is presented under evaluation of not only strength and deflection 
but also fatigue durability.  

INTRODUCTION 

Michell truss in 1904 may be one of very early achievements categorized as 
evolutionary structural optimization. It was solved analytically without computer. 
Optimum layout problems such as location of voids in structures started in 1970s. 
Since 1980’s, the growth of digital computer power has made it possible to develop 
various evolutionary structural optimization methods based on numerical analysis for 
more practical engineering purposes. Examples are the cellular automata method, the 
homogenization method and the bi-directional evolutionary structural optimization 
method[1-6]. Most of the papers regarding such methods showed two-dimensional and 
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three-dimensional examples being started with initial structures fully filled with 
structural elements in design space[1-4]. Roughly describing, resultant structures are 
obtained by the removal of a number of unnecessary structural elements from initial 
structures although the methods have the function to attach new elements again to the 
place where old elements were removed. The bi-directional method was proposed as a 
kind of evolutionary structural optimization with the enhancement of attaching new 
element process. 

This paper presents a new evolutionary structural optimization method for 
obtaining light structures under considering double-disciplinary requirements about 
statics and dynamics. The method normally starts using an initial structure that is very 
simple and slender because we think it is very practical. The simple structures can grow 
up to sophisticated structures using comparatively less computational resources than 
conventional ones. In static structural optimization, sophisticated structures mean the 
light structures having appropriate strength and rigidity against applied external static 
forces. Mises yield criterion is used to judge yielding condition in this paper, although 
any yield criterion can be available. Structures are reinforced at yielding place by 
attaching new finite elements on the local surface areas. On the other hand, appropriate 
number of finite elements are removed from the places with some degrees of allowance 
to yielding. In dynamic structural optimization, sophisticated structures mean the light 
structures having its natural frequencies of interest as closely as possible to design 
target frequencies or having those at higher frequencies than required minimum 
threshold frequencies. Two kinds of sensitivity functions are used for these 
optimization objectives in this paper. One is a pseudo sensitivity function about 
Rayleigh quotient and the other one is strain energy with respect to the removal and 
attachment of elements. Note that good handling of the “mode-switching” problem is a 
key point to make a success of dynamic optimization. “Mode-switching” is a 
phenomenon that changes the order of natural modes. “Mode-switching” really occurs 
when some finite elements are removed from or attached to the objective structures in 
evolutionary optimization process. The natural frequency of each mode shape is 
strongly affected and changed by the “mode-switching”. Consequently, the 
evolutionary optimization often becomes unstable in the case of using only 
conventional evaluation parameters. Then, in the present method, the problem is 
prevented by the combination of the abovementioned two kinds of sensitivity functions. 
In this paper, an integration method based on the abovementioned techniques for the 
static and the dynamic optimization is presented because in practice dynamic structural 
optimization cannot be realized without consideration of strength. In addition, many 
structural parts in machines dynamically move and/or oscillate so that dynamics must 
be considered in addition to strength. Therefore, the integration is very important to 
develop such methods for practical use. This paper presents a concise explanation of 
the method and a example numerical  of a connecting rod model for small passenger 
car class engines. 
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Outline of Theory 

Figure 1 is the flowchart of the algorithm. The optimization is subject to three kinds of 
constraints. The one is stress constraint, i.e., yield constraint. Mises yield criterion is 
applied to the application in this paper. The second one is a deflection constraint. The 
deflection at some points of interest in the structure are restricted to have equal or 
smaller than maximum allowable designed deflection against  external forces. The 
third one is natural frequency constraint. Some natural frequencies of interest are 
restricted to become equal or higher than thresholds that are set as acceptable minimum 
designed frequencies for each. For the most typical case, the first natural frequency is 
to be restricted. 

\Mises yield criterion is reviewed as 
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where σ  and τ  represent tensile stress and shearing stress respectively, the subscript i 
means the element numbering, and the subscripts x, y and z denote three directions of 
Cartesian coordinate system. Eq.(1) is used for the judgment of both strength and static 
deflection. 
     For dynamics the following pseudo sensitivity of eigenvalues are used: 
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where kL  and kE represent the strain energy and the kinetic energy stored in the 
structure in the k-th natural mode respectively, l,kS  and l,kT  denote the strain energy 
and the kinetic energy stored in element l.No  in the k-th natural mode respectively, and 

kλ  represents the eigenvalue of the k-th natural mode. Eq.(2a) is used for removing an 
element and Eq.(2b) is used for attaching an element.     The algorithm is concisely 
presented in the form of the flowchart in Fig.1. 
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 Fig.1 Flowchart of the Algorithm 
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OPTIMIZATION OF A CONNECTING-ROD MODEL 

Figure 2 shows an actual connecting rod and its FE model to be optimized.  This is the 
initial model for the optimization. 
 

Motion analysis of Piston-Crank Mechanism 

This analysis is carried out in order to compute the inertia load of the connecting rod.  
Piston-crank motion under a constant engine speed is modeled and computed using the 
piston-crank model shown in Fig.3. The derivation of the equations of motion is 
skipped here because of an orthodox analytical method. Runge-Kutta method is used 
for the numerical analysis. Two points of modeling are noted here. 
      Firing force applied to the piston head is assumed as 
 
 SPF ×−−= )}(exp{ 0max θθα                                                                  (3) 
 
where Pmax is the Force amplitude, 0θ  is the firing delay angle from 0=θ  with respect to the 
crank position.   The motion of the piston-crank mechanism generated due to the firing force. 
      The connecting rod is simply modeled as shown in Fig. 4 for this analysis.  Two equivalent 
mass M1 and M2 are firstly expressed by 
 

 
L
aMM c=1       and        

L
bMM c=2                                                           (4) 

 
according to the mass equivalence. This simple modeling cannot always represent the inertia 
moment equivalence so that a parameter Q  is defined and used in this paper to satisfy the 
inertia moment equivalence. The parameter is expressed by 
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Fig. 2  Specimen of Connecting Rod and its FE modeling 
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where 2kM c  is the real inertia moment about the center of mass of the connecting rod, and 
LbMcaLMcab // 22 +  represents the inertia moment of the simple model shown in 

Fig.4.  The parameter is a compensation parameter about inertia moment.  Figure 5 
shows an example of the piston-crank mechanism motion  and the inertia load analyzed 
using the modeling method.  This motion analysis is implemented into the evolutionary 
optimization.  The moment of 50Nm is set as the external moment resistance applied to 
the crankshaft. The motion analysis is carried out for the period of  2 cycles of the 
crankshaft rotation under the initial condition in which the rotational speed is set 
10000rpm and the initial crank angle ( )radπ−=θ . 
 

Fatigue Analysis 

Fatigue analysis is based on the mean principal stress aσ  and the stress amplitude mσ  
which are derived from the maximum principal stress maxσ and the smallest principal 
stress minσ .  In this study, the maximum  principal stresses are obtained in the motion 
analysis for two cycles.  The instant principal stresses are computed by 

 

Fig.3 Piston-crank Model to analyze inertia load

Fig.4 Simple modeling of Connecting rod
for motion analysis 
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The mean stress and the stress amplitude are defined by 
 
 ( ) 2/minmax σσσ +=a      and    ( ) 2/minmax σσσ −=m                (7) 
 
The fatigue limit wRσ  is set to be b. σ50  where bσ  is the tensile strength. The safety factor 
is set to be 2 for the tensile strength and the true rupture stress.  Figure 6 is a fatigue limit chart 
about the initial model.  The horizontal axis is the scale of  the mean stress. The vertical axis is 
the scale of stress amplitude.  The straight solid line denotes the fatigue limit, which can be 
expressed by 
 
 0=−+ TwRaTmwR σσσσσσ                                                                (8) 
 
where Tσ  and wRσ  are the real rupture stress and the fatigue limit stress, respectively. The 
bended solid line expresses the yield stress. Many small circles represent the stress amplitude 
vs the mean stress with respect to the maximum and the minimum principal stress about all 
finite elements of the connecting rod model in two cycles of piston-crank motion.  Figure 6 
shows that fatigue breakdown occurs in the initial connecting rod in this case study condition. 
      Figure 7 is the schematics of the resultant FE model after 84 iterations of the optimization. 
Figure 8 shows the schematics of the cross-sections, which shows the optimized structure is a 
hollow structure. Figure 9 is a fatigue limit chart about the optimized model. Table 1 lists the 
comparison of the structural specifications between the initial model and the optimized one.  
The optimization finds an appropriately good connecting rod model that is lighter and keeps 
enough dynamic strength. 

Fig.8 Skematics of Cross-sections
of Optimized Model 

Fig. 7  Optimized FE model 

Fig.6  Fatigue limit chart about the initial
connecting rod model 
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 SUMMARY 

This paper presented a new evolutionary structural optimization algorithm and a basic 
example about optimizing a connecting rod model under the consideration of dynamic 
strength, deflection and fatigue constraints. The application demonstrated the validity 
of the proposed algorithm. 
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Items Initial Model Constraints (H) Opt.Model

A 298.1 440.3 404.4 

B 336.5 203.8 152.9 

C 1.121 1.691 2.371 

D 0.11013 0.04220 0.04215 

E 568 2437 2830 

F 1988 5101 5153 

G 3426 5455 5819 

Fig.9 Fatigue limit chart about  
the resultant model 

Table1 Structural Specifications 

A:Mass(kg) 
B:Largest equivalent stress (Yield stress:363) [Mpa] 
C:Safety rate about Fatigue Breakdown 
D:Change of the distance between two centers of journal holes [mm]
E:1st Natural Freq. [Hz] 
F:2nd Natural Freq. [Hz] 
G:3rd Natural Freq. [Hz] 


