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Abstract 
The active suppression of structural vibration is normally achieved by either feedforward or 
feedback control. In the absence of a suitable reference signal feedforward control cannot be 
employed and feedback control is the only viable approach. Conventional feedback control 
algorithms (e.g. LQR and LQG) are designed on the basis of a mathematical model of the 
system and ideally the performance of the system should be robust against uncertainties in 
this model. The aim of this paper is to numerically investigate the robustness of LQR and 
LQG algorithms by designing the controller for a nominal system, and then assessing (via 
Monte Carlo simulation) the effects of uncertainties in the system. The ultimate concern is 
with the control of high frequency vibrations, where the short wavelength of the structural 
deformation induces a high sensitivity to imperfection. It is found that standard algorithms 
such as LQR and LQG are generally unfeasible for this case. This leads to a consideration of 
design strategies for the robust active control of high frequency vibrations. The system 
chosen for the numerical simulation concerns two coupled plates, which are randomized by 
the addition of point masses at random locations.  

INTRODUCTION 

Many situations arise in which it is desirable to reduce the vibration levels of a 
structure which is subjected to high frequency excitation [1].  In considering 
vibrational control methods which might be applied, the following physical 
characteristics of high frequency vibration should be borne in mind: 
 

i. A large number of degrees of freedom are required to describe the detailed 
structural response.  This is because high frequency vibrations have a short 
wavelength in comparison to the length scale of the structure. Modelling such 
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vibrations with the finite element method (FEM) requires around five to seven 
elements per half wavelength, and thus very many degrees of freedom 
(typically millions) are needed for a complex structure. 

 
ii.  The system response is very sensitive to uncertainties. This is again due to the 

short wavelength of the vibration.  Structural uncertainties can have a 
significant effect on the exact location of the natural frequencies, and likewise 
on the detailed spatial distribution of the mode shapes.  Two nominally identical 
structures from the same production line can thus display very different 
dynamic response properties.  

 
A common approach to the control of vibration is to apply either feedback or 

feedforward active vibration control (AVC). Most existing work on AVC tends to be 
focussed on low frequency vibration, often with collocated feedback, as employed for 
example in references [2-5].  One advantage of feedback control over feedforward 
control is that there is no requirement for knowledge of the disturbance signal [6], and 
collocated feedback control has good stability and robustness properties.  

The aim of the present paper is to examine the performance of feedback control 
in the presence of system uncertainties, with the aim of assessing the likely efficacy 
of this technique when applied to high frequency vibration.  Attention is focussed on 
LQR and LQG controllers, and these are applied to a two plate system which is 
randomised by a change in location of a number of attached masses.  Monte Carlo 
simulations are used to assess the robustness of a controller designed for a nominal 
system, and possible alternative control design methods are discussed. 

OPTIMAL LQR AND LQG CONTROLLERS  

During the last two decades, various types of optimal feedback structural control 
algorithm have been developed.  The main algorithms are: Linear Quadratic 
Regulator (LQR), Linear Quadratic Gaussian (LQG), and the robust control 
algorithms H2 and H∞, together with various adaptive control strategies.  The present 
work is a preliminary study of the effect of structural uncertainties at mid to high 
frequencies, and only LQR and LQG controllers have been considered thus far.  
These controllers are summarised in the present section. 

For a system with the state-space equation of motion given in Eq. (1) below, the 
LQR algorithm provides a means of finding the controller that minimizes the cost 
function given in Eq. (2):   
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Here Qr is the error penalty and Rr is the control penalty. For a linear time 

invariant (LTI) multiple-input multiple-output (MIMO) system, the concern is often 
to minimize an output of the form y(t)=Cx(t), in which case it is common to take 
Qr=CTC.  If the aim is to minimise all the states, then y(t)=Ix(t) is selected to treat all 
states as equally important or y(t)=QiiIx(t) to impose a different penalty for each 
state. Assuming [A, B] is controllable and [A, C] is observable, then the unique 
optimal control law for LQR is the full state negative feedback given by Eq. (3) 
below, in which Klqr = Rr

-1BTXlqr. Here Xlqr is a symmetric, positive definite, constant 
matrix obtained from the Algebraic Riccati Equation (ARE) [8].    

 
u(t) = -Klqrx(t)  (3)

 
The major drawback of the LQR method is the requirement for all states to be 

measured, and also external noise is not considered. Clearly, this is not feasible for 
many practical systems. Hence in the LQG method a Kalman filter is used to estimate 
the full states from noisy output measurements. The plant state-space model for the 
standard LQG problem is given in Eq. (4) below.  The disturbances w (process 
noises) and v (measurement noises) are uncorrelated, zero-mean, Gaussian, white 
noise processes with specified co-variance matrices. The block diagram for the LQG 
controller is given in figure 1. The LQG design process involves two steps: the first is 
to find Klqr assuming that all states are known, and the second is to find an optimal 
state estimator so that )}()E{( T xxxx )) −−  is minimized, where x)  is the estimated 
state vector. This estimator is independent of the weights Qr and Rr. With xxe )−= , 
the closed loop dynamics for the plant and compensator are given by Eq. (5) below.  
Since the matrix Acl is upper-block-diagonal, the closed loop poles of this system are 
given by the poles of deterministic LQR system together with the poles of the Kalman 
filter. 
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Figure 1- Block diagram for LQG optimal control 

SIMULATION RESULTS: LQR IN THE PRESENCE OF 
STRUCTURAL UNCERTAINTIES  

A simulation of the robustness of the LQR algorithm for an example structure is 
discussed in this section.  The system consists of two simply supported plates with 
distributed point masses and spring couplings, as shown in Figure 2.  The random 
positions of the point masses are perturbed to produce structural uncertainties.  For 
simplicity, point masses are placed only on plate 1. The length, width and thicknesses 
of the plates are 0.8x1.0x0.005 m for plate 1 and 1.0x1.2x0.005 m and for plate 2. The 
density, Young’s modulus and Poisson’s ratio for both plates are taken as 2700 kgm-3, 
7.1x1010 and 0.33 respectively.  

An LQR controller has been designed for the nominal system given in figure 2 
(i.e. a system with the masses in a fixed position), and the robustness of the controller 
has been investigated by considering its performance for systems with the masses in 
different positions.   The degree of uncertainty is controlled by specifying the number 
of point masses and their total mass, as a percentage of the bare plate mass.  

The stability of the system is assessed from the closed-loop poles (eigenvalues).  
Table 1 summarizes the simulation results and shows: the number of modal degrees 
of freedom considered for each plate; the number of point masses added to plate 1; 
the sum of the point masses, as a percentage of the plate mass; the “% instability”, 
which indicates the number of poles that are unstable.  Figure 3 shows the poles for 
the case of a system with 10 point masses (20% of total plate mass) for both the 
nominal and the perturbed systems (100 ensembles). Local controller aims to 
suppress the vibration response of the system at the drive point, whereas a global 
controller minimizes the overall vibration response of the system. An explanation of 
the data presented in each subplot is given in table 2. For local control it is clear that 
as the level of uncertainty increases, the percentage of unstable poles tends to 
increase. However beyond a certain number of masses the effect is more like a 
general increase in the plate density, and the number of unstable poles decreases.  The 
global controller has more robust stability since it’s designed to minimize the overall 
response of the system.  
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Figure 2 –Coupled-plate system used for perturbation analysis  

 
Table 1: Percentage of instability for coupled-plate with LQR controller 

DOF plate-1 and 2 # point masses % from plate mass Global control 
(% instability) 

Local Control 
(% instability) 

10 0 55 
20 0 97 
30 0 99 
40 0 63 

5 

70 11 77 
10 0 19 
20 0 62 
30 0 64 

10 

40 0 47 
10 0 44 

25 

20 
20 0 7 
10 0 89 
20 0 95 

5 

70 0 96 
10 0 72 

100 

10 
20 0 58 

 
Table 2 - The data presented in Figures 3 and 4 

Plot 1 2 3 
1 Eigenvalues: nominal system Eigenvalues: nominal 

system with Global-
controller 

Eigenvalues: 
nominal system with 
local-controller 

2 Eigenvalues: perturbed systems Eigenvalues: 
perturbed systems 
with Global-
controller 

Eigenvalues: 
perturbed  systems 
with local-controller 

3 Statistical overlap factor: µσ /2=S , 
σ= standard deviation of perturbed 
frequency. µ= mean spacing between 
each frequency 

Histogram plot: 
Unstable frequencies 
under global 
controller 

Histogram plot: 
Unstable frequencies 
under local 
controller 



A. Gani, R.S. Langley 

 
Figure 3 - LQR-10 point masses with total of 20% from plate mass 

 
The local controller was found to be very sensitive to uncertainties and to 

become unstable with moveable masses having only 1% of the plate mass. In 
contrast, the global controller was able to accommodate a high level of uncertainty 
(70 % of total plate mass) as shown in table 1.  However, since LQR requires the 
measurements of all states this result will not be achievable in practice. The 
simulation result show that, as would be expected, the higher frequencies are the 
more sensitive to uncertainties.  

SIMULATION RESULTS: LQG IN THE PRESENCE OF 
STRUCTURAL UNCERTAINTIES  

Using the same methodology as in the previous section, an LQG controller is 
designed for a nominal two-plate system and its robustness assessed by perturbing the 
positions of the masses. Table 3 summarizes the simulation results. In this case the 
local controller was highly sensitive and could not accommodate even a very small 
level of uncertainty.  Furthermore, the global controller was stable only for mass 
loading below 1%.  Figure 4 (refer to table 2 for details), shows a sample plot of the 
system eigenvalues for 150 ensembles.  It can be noted that the LQG has no global 
system-independent guarantee of robustness [9].   
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Figure 4 – LQG, 5 point masses with total of 2% from plate mass. 

 
 

Table 3 - Percentage of instability for single -plate with LQG controller 

DOF plate-1 and 2 # mr % from M Global control 
(% instability) 

Local Control 
(% instability) 

1 0 100 
2 16 100 
5 30 100 

10 98 100 

5 

20 99 100 
2 61 100 

10 91 100 

25 

10 

20 61 100 
1 0 100 
2 14 100 

10 83 100 
20 97 100 

5 

30 100 100 
10 85 100 
20 89 100 

100 

10 

30 99 100 
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As might be expected, the LQG controller performance is much less robust than 
that of the LQR. Simulation studies with LQR and LQG reveal the system gets 
unstable at high frequency and this frequency range is very sensitive to structural 
uncertainties.  As can be seen from figures 3 and 4, the open loop poles of the system 
are stable before and after applying the point mass perturbations. This suggests that, 
the underlying passive system is stable. However, the closed loop poles are not stable 
due to the instability introduced by the control system.  

CONCLUSIONS 

This paper has explored the robustness of LQR and LQG controllers in the presence 
of structural uncertainties for a coupled plate system.  Although some improvement in 
performance might be expected from robust controllers such as H∞, the present work 
has highlighted the extreme difficultly encountered in designing feedback controllers 
for mid or high frequency structural vibrations in the presence of uncertainty.  A 
revised approach would be to consider local controllers such as skyhook dampers 
with simple PID control and strong robustness properties.  The design problem is then 
not to design a complex feedback law, but to decide on the optimal location of the 
devices to be employed. This type of optimization study will require an efficient 
method for the analysis of mid and high frequency vibration in the presence of the 
controllers, and the hybrid method [1] offers one such approach.  This strategy is 
being considered in a continuation of the present work. 
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