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ABSTRACT

This paper makes use of an energy balance to
estimate damping parameters in multiple
degree-of-freedom (DOF) vibration systems. The method
balances the energy input as registered in the
force-displacement relationship of the real system against
the energy lost in a theoreticad model, consisting of
viscous and Coulomb friction components, to develop
the identification algorithms.  The developed algorithms
are applicable in the general and periodic input cases.
Numerical investigations applying the algorithms to the
simulated data illustrate promising results. In addition,
the effects of random noise on the estimation results are
numerically investigated.
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1. INTRODUCTION

Friction parameter estimation is based on the analysis
of measured input and output responses. Our interest isin
identifying parameters of basic friction models by
making use of vibration properties. For single DOF
case, free vibration decrements have been exploited long
ago for systems with linear iffness elements and
“small” damping. Free vibration decrements are not
applicable if the damping is strong enough to preempt
sufficient oscillations.  As such, it makes sense to
develop schemes to identify damping parameters in
forced oscillators.

A scheme for extracting Coulomb and viscous
friction parameters from forced oscillations based on the
analytical solutions of Den Hartog [1] and Hundal [2] for
the nonsticking response to harmonic excitations was
formulated in [3]. The limitations of this analytica
forced-resonance method are that it is not applicable for
damping which is not “small,” it relies on anaytical
solutions of single-DOF linear systems, and it does not
treat friction models other than Coulomb plus viscous
(see for example, references [4-9]). Thus, an energy
balance was proposed as an alternative to identifying
friction parameters by using analytical solutions[10].

The energy method balances the energy input as
registered in the force-displacement relationship of the
real system against that lost theoretically in a damping
model with unknown parameters to develop the
identification algorithms. Numerical and experimental
investigations have shown the reliability and
effectiveness of the energy-dissipation method in
estimating viscous and Coulomb friction from single
DOF vibration systems subjected periodic input [10].

In the current study, the energy-dissipation method will
be extended to handle the multiple DOF problems.

Many estimation methods exist in the literatures that
can be applied to extract damping information from the
input and output measurements of the system. For
instance, a direct method was proposed by Mohammad et
al. in [11] where physical parameters, i.e. mass, stiffness
and damping, of linear and non-linear structures can be
estimated using measured time data and the |east-squares
criterion.  The method is ssimple and reliable provided
that the system is excited in the range where there are
modal frequencies. Chen and Tomlinson [12] proposed
estimating damping parameters in nonlinear oscillators
by utilizing the acceleration, velocity and displacement
output and formulating the output in terms of series of
frequency response functions. The model used in [12]
can be regarded as a subgroup of the AVD models. On
the other hand, a wavelet-based approach for identifying
parameters from nonlinear systems has been proposed by
Ghanem in [13]. The method relies on a wavelet-based
discretization of the non-linear differential equation of
motion where orthogonal Daubechies scaling functions
are used to track fast variations of the state of the
dynamical system. The method might be sensitive to
noise since responses are projected onto orthogonal space
in order to find the wavelet-Galerkin solution of the
differential equation of the system. By using the
orthogonal expansion, details of data are zoomed in order
to form proper representations in terms of expansion
coefficients.  As such, high-frequency noise could cause
distorted expansion coefficients, which in turn might lead
to incorrect estimates.

Recently, Chen in [14] proposed a Haar-wavelet
based identification method. The same approach was
also adopted in an on-line identification task by the
author [15]. The method projects the governing
differential equation of motion onto orthogonal Haar
spaces so that a set of algebraic equations with the
system parameters as unknowns can be obtained. Using
the input/output data of the system together with the
least-square criterion, the unknown system parameters
can be estimated. The method is also prone to noise
problem because it relies on accurate approximation of
the signa using the orthogonal basis. Different from
the expansion methods, the energy-dissipation approach
projects the differential equation of motion onto energy
spaces. The method is more robust when facing random
or high frequency noise because such noiseis expected to
be filtered through the application of digital integration.
The latter is adopted in implementing the identification
process of this study.
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2. THEORETICAL BASIS

All The energy-dissipation method involves the
balance between the energy dissipated by the friction
force of a real system against the energy input to the
system. This balance results in the “equivalent viscous
and Coulomb friction” parameters, similar to the
traditional “equivalent viscous damping” concept
presented in undergraduate textbook such as [16]. To
briefly explain the idea, let's consider a single DOF
damped-forced oscillator with the following equation of
motion

mi+ kx+ F(x, X) = a(t), )

where m is the mass, k represents the stiffness, x is the
displacement, dots indicate derivatives with respect to
time, and a(t) represents an excitation. In addition,
F(x,X) denotes the damping force occurring at the

contact interfaces. Multiplying Eq. (1) by dx and
integrating the resultant equation along the motion path
C brings forth the following equation

[ {mxdx + kxdx + F (x, X)}dx = [ a(t)dx.

To fecilitate the implementation of integration, the
integration variable can be changed totime. Hence

[ Mm%+ b+ F (x, X)) xdt = [ a(t) xdt

where T, denotes a finite time interval. Now, if the
followings are defined

W, = [ F(x, Q)xdt LW, = [a)xdt ;
W, = [T {mx+ od xdt
Eg. (1) becomes

W, =W, -W, 2

Equation (2) implies a balance among the dissipated,

applied energy and the sum of kinetic and elastic energy.
To implement the damping identification, we assume that
X(t) (and its derivatives) and a(t) can be measured.
Then, the terms involved in Eq. (2) are quantified while
F(x,X) is expressed using an assumed friction model
with unknown parameters. By integrating and balancing
Eg. (2), one acquires identification equations for the
damping parameters.

When a(t) and x(t) are periodic, one can integrate Eq.
(2) over a cycle of periodic motion. In that case, the
contribution of the conservative components of the
oscillator “ mXx+kx " is zero, so that the following
energy-dissipation equation can be obtained

W, = [T (x,x)xdt = [T a(t)xdt =W, . ©)

t

here T represents the fundamental period of the response.
To further illustrate the idea, we assume that F(x,X) is

modeled by “viscous plus Coulomb friction” while a

harmonic base excitation is used for a(t). Therefore,
a(t) = kY, cosat , and

W, = ["T{cx+ F, son(%)} xdt = [ {kY, cos wt} xdt =W,
(4)

Here, ¢ and F, are the equivalent damping
parameters to be identified. Eq. (4) can be used to
estimate ¢ and F, using two excitation levels.
Alternatively, more excitation levels can be applied to
gain multiple versions of Eq. (4). Suppose that the
number of eguations is more than the number of
unknown parameters, the least-squares criterion can be
applied to improve the robustness of the method.

The algorithms outlined above are suitable for
estimating damping parameters from a single DOF
vibration system. A study focusing on periodic input
(and response) has been presented in [10] in which the
effectiveness and reliability of the energy-dissipation
method were demonstrated. The method is not only
valid for the periodic case, it is aso applicable in the
general-input or input-free case, for which T becomes
an arbitrary finite time interval rather than a forcing
period. In the input-free case, a(t) vanishesin Eq. (2).
The initial states of the system, under this condition,
should be large to introduce sufficient conservative
energy. Thus, the ensuing free responses will provide
information from which the damping parameters are
estimated.

The basic concepts and procedures used in the single
DOF case can be extended to handle multiple DOF
vibration systems. To show how the extension can be
accomplished, the following equation of motion of a
multi-DOF system is considered

MX+kx+cx+DX)F, =a(t)

where M e R™" represents the diagonal mass matrix,
N is the number of degrees of freedom, k e R™
indicates the symmetric stiffness matrix, ce R™" isthe
viscous-damping matrix, and a(t)e R" is the input
vector. F, e R" represents a vector of elements F,
such that D(x) F, models the Coulomb components
locating at certain places of the discrete model of the
system. Hence, D(X) e R™" isamatrix comprising of
sign functions of relative velocities occurring at contact
interfaces.  Since, in general, not every damping
components in ¢ and F, are unknowns, Eq. (4) can
be reorganized into the following

MX +kx+E(x,X) +B(X)c” +G(X)F, =a(t) (5)
in which E(x,x) e R" denotes a vector containing all

the “known” damping components multiplied by their
corresponding state functions.  On the other hand,

c*=[ci,c§,-~,c;]T and F;:[F,II,F,IZ,---,F,:S
contain the unknown viscous and Coulomb-friction



parameters which are to be estimated.  B(x) € R™© and
G(X) e R™® denote state-function matrices which when

multiplied separately by ¢ and F, model the viscous

and Coulomb damping of the system.

To formulate the damping-estimation algorithms, we
first assume that a(t) and x(t) are both periodic with a
common fundamental period, T. Note that the
periodicity condition will be released later on in this

study. Multiplying Eg. (5) with x' , where
X, =[0---% ---0]'na , and integrating the resultant
equation over acycle of periodic motion yields

t+T t+T t+T

jx iMXdt + jx ikxdt + jx iE(X, X)dt + jx iB(X)c dt

t+t t+T

+ [XTIG(F dt = [xTia(t)dt (6)

Duetothefactthat M isadiagona matrix and X;
possesses only one non-zero element, the following
eguation can be obtained

t+T t+T n t+T

[xmxdt+ | (Zk )X dt+ [ e (x, %)% dt+

ij
T (S, (e dt+ ] (59, GOF % ct = [, (0% ck
t =1 t j=1 t

()
where m represents the “i-th” diagonal element of M .
{kij,j:L...,n} , {,J,j 1.. Q} and
19;,i=1...,S| individualy denote the “i-th" row
vector of matrices k, B,and G, whereas a and e
are the “i-th” element of vectors a(t) and E(X,X),
respectively.
Since the integration of conservative components

over a cycle of periodic motion are zeros, we have
t+T t+T

jxmxdt—o and jk xxdt=0

Eq. (7) can then

be recast into

t+T t+t

| (Zb., ()¢ )% dt + I(Z g; () Fyg )% dt =

t j=1

jai(t)xidt j(ZkIJ X; )% dt — jexdt

]¢|
or equivalently,

t+T t+T t+T

o jb,lx dt+c, jb,zx dt+--+Cq jlex,dtJr

t+T t+T

Fo jg,lx dt+F,, jg,zx dt+---+ Fg jg,sx dt (8)

t+T t+T t+T

= ja(t)xdt— | (Zk” Dxdt— [exdt

J:tl

The procedures described above can be repeated for
every single DOF of the system toresult in n equations
smilar to Eq. (8). To that end, the following
identification eguations can be obtained

C17|1+027|2+ +CQT +Fk17|1+Fk27|2 +Fl:s7is:ﬂi
i=12---n )
where
t+T .
= Ibij (X)x; dt ]=12---Q (10)
t
t+T . .
yi = 9 (% dt ]=12--S (11)
t
=T t+T  n t+T
B = ja(t)xdt— | (Zk” xdt— [e (X)X dt
t ]¢I ! (12
i=12---n

It should be emphasized that the agorithms
presented in Egs. (9)-(12) are only suitable for the
periodic case in which both input and response are
periodic data For the case where a(t) is a genera
input, the periodicity of the signal no longer holds. In
that case, the integrating durations are arbitrary, and the
contribution of conservative terms is not zero. Then,
the expression of Eq. (12) becomes

B = a®xdt— [mxxd-
t+T nt tJtrT (12&)
J Sk it~ [ (o i=12--n

Here, the integrating duration, T, is an arbitrary
finite time interval rather than a forcing period. Egs.
(9)-(12) and (12a) can be adopted to estimate damping
parameters in a generd-input problem.  For the
input-free case, a(t) vanishes in Eq. (128). Large
initial states are required under such a condition to
introduce sufficient free responses from which the
damping information can be extracted.

Additionally, in order to measure “the goodness of
fit” between the estimated system response and the
simulated or experimental one, a normalized mean
square error (MSE) of “acceleration” signal is adopted.
This error criterion is defined as the following [ 11]

{Z (Xu }
MSE, =| ——— [x100

p9 %

. i=12...n (13)

where X isthe ssmulated or measured acceleration, %

isthe estimated one. N, is the number of data points,

and o is the variance of the simulated or measured

acceleration.
In the next section, numerical examples focusing on



periodic and general input are adopted to validate the
proposed method. The input-free scheme will be used
in the experimental investigations which are currently
undergoing. In numerical studies, the effects of random
noise on the estimation results are also explored.

.APPLICATION OF THE METHOD TO

SIMULATION DATA

Two numerical examples with known parameters
subjected to periodic or general (random) input are
selected here to validate the proposed schemes. In
implementing, the differential equations of motion are
first formulated in matrix form similar to that of Eq. (5).
A stiff, low-order ordinary differential equation (ODE)
solver of Bogacki and Shampire (ode23th) was then
adopted to numerically integrate the ODEs at a constant
sampling rate after converting the ODEs to first-order
form [17]. Simpson’s rule was adopted to obtain 7,

7i.and B, fromsignalsof adequate lengths.

3.1 Numerical study of a 2-DOF system

To validate the method, a two-DOF vibration system,
whose schematic diagram is presented in Figure 1, isfirst
explored. According to Figure 1 and the contexts of Eq.
(5), the following differential equation of motion can be
obtained

m 0 ] [kek k%]

0 m, X2 _k1 kz“Lk1 %

{Xl—xz 0} ) { sgn(a) 0 } Fe :{kW(t)}
%=% %]|c,] |—sgn(d) san(x,)||F,| (O

where q=x —X, representing the relative velocity
between m, and m, , w(t)=W,coswt is the

(14)

harmonic base excitation, and ¢, ¢,, F,, and F,,
denote the un-identified damping parameters.
Obviously, the “viscous plus Coulomb friction” model is
adopted here to describe the damping behaviors of the
contact.

x, () 2, (2)
B EE—
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Figure 1 The two DOF system used in the parameter
estimation process.

Based on Eq. (14) and the contexts of Egs. (9)-(12),
the followings are obtained

Tllci +7u FI:1 =B (15)

TG + 758, + Y nFia + 7 2Fis = B (16)

where 7, =y, =0, and

=T t+T

Ty = [ =%)%dt; iy = [SgN(%, — %)% dt ;
t t

t+T

B = [ (KW, cosat + k;x,)%,dt (17
t

=T . . . t+T 2
Ty = j.(xz = X)Xt 7y = j(xz) dt;
t t

t+T

Y=~ ISgn(X1 — X)X, dt (18)
t
t+T . . t+T .
Vo = JSgn(Xz)det; Ba = ,[klxlXZdt (19)
t t

It is worth to note that both of the differentia
equations appearing in Eq. (14) are of second order.
Therefore, each of them can be used to solve for two
unknown parameters provided that persistent excitation
conditions are satisfied [18]. The maximal number of
unknowns that can be estimated in this example is four.
However, one can also choose to use both ODEs of Eq.
(14) with various excitation levels so that more than four
algebraic equations are obtained. In that case, more
robust estimations can be gained through the application
of the least-squares criterion.  We recommend the latter
approach. To that end, Egs. (15) and (16) arerecast into
the following

AP =U (20)
where
z'111 0 7 111 0
Th Tm Ya Yz
. . : : CI
A= lel 0 711(1 0 . p— C;
T;l 752 Ve 51 e 52 B l:|:1
: : FI:Z
711 0 7 11 0
_T|21 T|22 7|21 7|22_ 2Ax2
i
i
U =| B (21)
B3
I
_ﬂ 2 Joma

Here, the superscript “k” corresponds to different
excitation level. Hence, there are totally “I” excitation
levels applied in Eq. (21). The optimal solution for
vector P, inthe least-squares sense, becomes



P=(ATAA'U, (22)

Eq. (22) provides an estimate of the unknown parameters,
aong with a residua r=AP-U that is generdly
nonzero. The residual can serve as an indicator of the
quality of the damping model. In this casg, it tells
whether “viscous plus Coulomb” model can adequately
describe friction behaviors occurring at different contact
interfaces. In addition, since the coefficients are acquired
by digital integration, high-frequency noise is expected to
be filtered, but low frequency noise might have more
influence.

Next, numerical experiments are conducted to
illustrate the reliability of the proposed method. The
simulations were carried out in accordance with Eq. (14)
together with the following parameter values. @ =8r,

m =m, =10, k=100, k, =k, =20, ¢ =c, =6.0,
F., = F., =10.0 . Three excitations corresponding to
W, =400 , W, =800 , and W, =180.0 were

applied to gain the integrated coefficients. Based on
these data, the least-sguares estimates obtained from Eq.

(220 weree C,c=5993 ; <, =6.0089 ;
El:lLS:9'9422 ; E;2LS=9.9462 . The mean of

absolute values of the residuals (errors in each of Eq.(20))
normalized by the right-hand side of Eq. (20) was
1.11e-3, for numericaly integrated noise-free numerical
data with a perfect model. Moreover, the MSE values
calculated from the simulated and estimated acceleration

responses  were MSE;= 167x10°%® % and

MSE,=1.32x10"° %, respectively, where the subscript
denotes the DOF the motion was referred to. Evidently,
the estimation accuracies are promising which shows the
effectiveness of the method.

In order to examine whether the estimation accuracy
can withhold when noise are present, we added to the
simulated force input, velocity and displacement
responses a white random noise of 5% of their root mean
squares (rms) respectively. In processing the
contaminated data, we would till treat the signals as
periodic ones athough they have definitely lost that
property in a more rigorous sense. Features of the
contaminated signal can be observed in Figure 2 in which
the upper plot shows the force input (corresponding to
W, =180) while the lower plot shows X(t) .

Upon choosing one complete cycle of the
contaminated signals and performing the required
integrations in accordance with Egs. (17)-(19), one
obtained the parameter estimations. The results were:

C,s =584 ; Cys =596 Fos =1373
Fo,s =10.29 with the mean of the absolute values of
the normalized residuals being 1.75e-2. At the first
glance, the estimation errors seem to be substantial.
However, when one proceeded to examine the

discrepancy between the simulated and estimated
acceleration signals as shown in Figure 3, one actually

L L L L L L L
39 59.05 59.1 59.15 59.2 59.25 59.3 59.35 59.4 59.45 59.5
t

L L L i L L L
5905 591 5915 592 5925 593 5935 594 5945 595
t

Figure 2 The contaminated signals (solid line) obtained
by adding a white random noise to the simulated data
(dashed line) which have been masked by the noise.

found that they were almost indistinguishable, especialy
for the motion of mass 1. Note that the comparison
tests demonstrated in Figure 3 show the acceleration data
to which we added no random noise. Therefore, both
the estimated and simulated data seem to be cleaner than
that presented in Figure 2. The associated MSE values
for these acceleration data were MSE;=0.0011% and
MSE,=0.132% respectively. The low MSE vaues and
the close features appearing in the cures of Figure 3
indicate that variations of dry-friction force have small
impact on the response of the system. Moreover, in Fig.
2, one also sees that the random noise added on the
signals are severe which may not often been seen in the
real situations. To this end, the reliability of the
energy-dissipation method subjected to low-level random
noise can be assured. In the next section, a 3-DOF
numerical system isinvestigated.
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Figure 3 Comparison between the estimated (dashed line)
and the simulated (solid line) acceleration responses with
5% noise level, the 2-DOF system.

3.2 Numerical study of a 3-DOF system: periodic
excitation case

The 3-DOF numerical example, with its schematic
presented in Fig. 4, has been studied in [11]. According
to Figure 4, the following equations of motion can be
obtained



m 0 0 7(y] |[atcn) -Co 0 Vi
O m2 0 yZ + - C;Z (CIZ + C;3) - C;3 yZ
0 0 myV, 0 —Cjy (Cos +Cxg) || Va
(kyy +kip) =Ky 0 A 0 f(t)
+| =k, (Ko +Kps)  —Kyg Yy, t+40 F, =40
0 —Kyy  (ky +kg) [Ya])  (SIN(Y3) 0
(23)

Note that four viscous parameters, c;;, Cp,, Cy, and

Cy ., and one Coulomb parameter, F, , are to be
estimated. Eq. (23) is converted into the following form

m 0 0 ([y (ky +kp)  —kp 0 Y1
O m2 0 y2 + _k12 (k12+k23) _k23 y2
0 0 m¥, 0 —Ka (kys +Kg) | Y3
Cu
Vi Vi—Ye 0 o0 ¢ 0 F, cosot
+ 0 Vo-¥: Vo-¥s O | 410 Fe =10
. . . C .
0 0 V-¥, Vo 7| (s9n(Va) 0
C33
(24)

According to Eq. (24) and the contexts of Egs. (9)-(12),
the following identification equations are obtained

Tllcil + leciz =5 (25)
7220;2 + z'230;3 =5, (26)
Tssc;3 + 7340;3 +7a F|: =B (27)
where
T I+T. . .
T = ,[det ; T = Iyl(yl - y,)dt ;
t t

t+T

B = IY1(F0 cosat + ki, Y, )dt (28)
t

t+T t+T
Tp = jY2(Y2 —y)dt 5 = jY2(Y2 —yy)dt
t t

t+T

B = Jyz (Kia Yy + KpsYs)dt (29)
t
t+T. . . t+T. 5
Typ = ,[Y3(Y3 - Y,)dt; Ty = Iysdt ;
t t
t+T. . t+T.
Ty = IY3 sgn(y,)dt; B = Iys(k23yz)dt (30)
t t

Numerical validations were performed with respect to the
3-DOF system shown in Fig. 4 together with the
following parameters:m, =1.5, m, =13, m, =2.0 kg,
Ky =Ky, =Ko = kg =1x 10° N/m,
Cy=C, =Cp=Cypy=20Ngm, and F, =1.0 N. The
same data were also applied in the study performed in
[11] in which a direct parameter estimation method was
proposed.

The procedures taken in the previous 2-DOF cases
were applied here. It should be emphasized that two

excitation levels, separately corresponding to 5 Hz and
10 Hz, were adopted in this example. The approach

differed from the 2-DOF case where the system was
excited at one single frequency and three different levels.
Forcing the system at two different frequencies, both
near resonance, could improve the estimation a bhit.
Although, in fact, accuracies obtained from exciting the
system solely at one frequency were also acceptable. For
instance, the edtimates obtained using the

mixed-frequency  excitation were: C,, =20.04
g, =20.05, &, =20.19, &,=20.09, F, =1.01.

by ks % C; g Y3

Figure 4 Three-DOF system with friction link between
mass 3 and ground.

The mean of absolute values of the normalized residuas
was 7.94e-4, for numerically integrated noise-free
numerical data with a perfect model. The MSE values
associated with the simulated and estimated accel eration
signals were. MSE, =0.0012% , MSE, =0.0013% ,
MSE, =0.0013% . The effectiveness of the proposed
method is again verified by the low values of MSE and
the small mean of the normalized absolute residuals..

In contrast, if two excitation levels, F, =100 and

200, corresponding to the same frequency, o = 207,
were applied, the resultant estimates turned out to be:

C,=1926, C,=1816, C, =2341, C,=20.80,
Iﬁfk =1.015, while the mean of the absolute residuals was

9.49e-5. The corresponding MSE values obtained
based on these estimates were: MSE, =0.0038% ,

MSE, =0.0014% , MSE, =0.002%% . Obviously,

the estimation accuracies obtained from the
mixed-frequency case are better (especially the viscous
damping estimate) than that of the single-frequency case.
Although the latter ones are also acceptable which could
be verified by the low MSE values associated with the
estimates. Our speculation is that forcing the system
with more than one frequency, near resonance, might
excite richer responses that contains more information
regarding the system'’s characteristics, including damping.
Thus, better estimates can be gained from these rich
responses. A thorough investigation might be required



to conclude the statement.

Similar to the 2-DOF case, we then added to the
simulated force input, velocity and displacement
responses a white random noise of 5% of their individual
root-mean-squares values. The excitation conditions
were the same as those of the clean-data case. The
estimates obtained from these contaminated data were:

¢, =1970, G, =175, T, =1845, C,=20.08,

IEk =0.85. The mean of the normalized absolute

residuals was 3.57e-2, while the corresponding MSE
values based on these erroneous-opted estimates were;
MSE, = 0.029% , MSE, = 0.032% ,

MSE, =0.035% . These data when compared to those

associated with the clean-data case again indicate that the
method is robust to random noise.  The statement can be
verified by the low MSE values and the extremely close
curves shown in the comparison plot of Fig. 5.

To summarize, we have shown that the
energy-dissipation scheme works very well in identifying
damping from multi-DOF vibration systems subjected to
periodic input, whether the data are clean or
contaminated. In order to show that the method aso
works in the general-input situations, the periodicity
conditions of the input (and response) will be released in
the next section in which a band-passed random input is
considered.

comparison between the simualted and estimated acceleration signals
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Figure 5 Comparison between the estimated (dashed line)
and the simulated (solid line) acceleration responses with
5% noise level, the 3-DOF system.

3.3 Numerical study of a 3-DOF system:
non-periodic excitation case

A couple of changes have to be made before
implementing the identification process of non-periodic
data. These include: (1) the contribution of the
conservative components can no longer be ignored and (2)
the integration time interval will be an arbitrary finite one
instead of a complete forcing period. In numerical
experiments, the system was excited at co-ordinate 1 by
using two band-pass limited (in the frequency range 5-50
Hz) white noise signals with zero mean and of r.m.s.
level 10 and 40, respectively. With the same parameter
values as in the periodic input case, Fig. 6 demonstrates

the random features of both the input and responses of
the system. Based on the simulated data and Egs.
(28)-(30), the integrated coefficients were obtained by
using the procedures similar to those taken in the
previous periodic cases. Then, the damping estimates
of the noise-free, random-excited data were obtained,

which were G, =200002 , G,=200010 |,

¢, =19.9990 , G, =20.0036, F, =0.999995. In

addition, the mean of the normalized absolute residuals
was 9.37e-6, whereas the MSE values obtained in this
case were MSE; =0.029% , MSE, =0.047% |,

MSE,; =0.091% .
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Figure 6 The input and responses of the 3-DOF vibration
system subjected to general input.
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Obviously, the estimates obtained in the
general-input case are more accurate than those of the
periodic case. The statement can be verified by directly
comparing the estimates obtained here to those
associated with Table 2. Other evidence can be
observed in Figure 7 in which indistinguishable features
between the estimated and simulated acceleration are
presented. The better estimates from general input might
be reasonable since the band-passed white noise input
has broader (and higher) bandwidth than that of the
periodic one. It is conceivable that such excitation can
excite richer responses from the system. Thus, more
information is provided from which the damping



parameters are extracted.
associated with the periodic
encouraging.

Similar to the previous cases, we added to the
simulated force input, velocity and displacement
responses a white random noise of 5% of their individual
root-mean-squares values.  The resultant damping
estimates obtained from these contaminated data were

C,=19998 , ¢, =200010 , C,=19.9990 |,

¢, =20.0004, F, =0.99995, while the mean of the

normalized absolute residuals was 2.32e-6. The MSE
values obtained in this case were MSE, =0.037% ,
MSE, =0.074% , MSE,=0.107% . The results
indicate that the band-passed random input is almost free
from the effects of the added white noise. Therefore,
the accuracies of the estimates and the associated MSE
values are more-or-less unaltered after the signals were
superimposed with random noise.

Nonetheless, the accuracy
input is aso very

4. CONCLUSION

In this paper the energy-dissipation method is
extended to identify damping parameters from
multi-DOF vibration systems. The method balance the
input energy against the energy dissipated by a
theoretical friction model, consisting of viscous and
Coulomb components. Through numerical investigations,
the method has been shown to be effective and reliable in
estimating damping parameters from clean and
contaminated signals. In comparison with those of the
periodic input, the estimation accuracy is better if a
band-passed white noise is adopted as the excitation. In
addition, the method is robust when high frequency
random noise is present in the measurements. This is
especially true when the band-passed random input is of
concern.  The method is also applicable in the input-free
situation, which will be adopted in the experimental
investigations. The experimental study is currently
undergoing.
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