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Abstract 
Periodic beams have proven to possess vibration attenuation properties that could be 
tailored to cover specific frequency bands. Experiments were performed on the 
properties of rotating periodic beams and were highly encouraging to proceed for 
further investigations. On the other hand, piezoelectric patches bonded to the surface 
of a vibrating structure have shown great potential for vibration damping when 
shunted to a passive RL circuit that dissipates the electric energy or connected to a 
closed loop control system. 
In the present study, combining the characteristics of periodic rotating beams to those 
of passively shunted piezoelectric patches to damp the vibration of a rotating Euler-
Bernoulli will be introduced using finite element analysis.  
The results proved the ability of the piezoelectric pairs to damp the vibrations of 
certain frequency band. Moreover, the periodic nature of the structure introduces 
vibration attenuation in other frequency ranges.  

INTRODUCTION AND LITERATURE SURVEY 

The term “Periodic Structure” is used to describe structures that consist of a set 
of identical parts, cells, connected together.  Periodic Structures have drawn the 
attention of researchers since the mid-sixties [ 1- 6] because of their high ability to 
attenuate vibrations. Meanwhile, special attention is given to rotating beams [ 7- 13] as 
rotating beams had wide range of engineering applications. On the other hand, the 
controlled vibrations [ 14- 25] received great attention due to attractive dynamic 
characteristics of the controlled structures. Attempts were made to use the advantages 
of both periodic structures and piezoelectric patches in field of controlled vibration 
attenuation [ 16,  18 and  25].  In this paper, we will present an attempt to demonstrate 
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the ability of periodic piezoelectric patches with shunted circuits to attenuate 
vibration.  

ROTATING BEAM WITH SHUNTED PIEZOELECTRIC PAIRS 
DISTRIBUTED PERIODICALLY 

Deriving weak form from Hamilton Principle 

Hamilton’s Principle states that: 
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Where Π, U, T and W are total energy, the potential energy, kinetic energy and 

external work respectively. δ(.) denotes the first variation.  
 

 
 

Figure 1: Rotating beam with shunted piezoelectric pairs distributed periodically 

The variation of the potential energy for the beam shown in Figure 1 and using 
piezoelectric constitutive relations [ 25] in term for potential energy, one gets: 
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Where QD, Iy, w, D and β are the beam modulus of elasticity, moment of 

inertia, mechanical displacement, the electric displacement, and the reciprocal of 
dielectric constant, respectively. The kinetic energy may be given by: 

 

∫ 






∂
∂








∂
∂

=∴
L

dx
t
w

t
wAT

0

δρδ
 

(3)

 



ICSV13, July 2-6, 2006, Vienna, Austria 

Where ρ, and A are the mass density of the material and beam cross-sectional 
area respectively. The variation of external work exerted on the system is caused by 
three sources; the shunt circuit, the external force and the beam rotation. [ 22-25]: 
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Where L, and R are the shunt circuit inductance and resistance respectively.  F 

is external force respectively. fc is the centrifugal force due to rotation.  

Applying Finite Element model to Hamilton’s Principal  

The above expressions can be written in the form: 
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Next, arrange expression (5) and (6) in matrix form: 
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The above matrix equation is the rotating sandwich element equation. The 

equations of left element, (base material only) obtained by eliminating WD.  
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Transfer Matrix Analysis for Cell 

Since the structure is periodic, the pass-stop bands can be obtained by studying 
the equations of one cell only. The cell matrices are constructed by assembling the 
individual element matrices providing that mechanical degrees of freedom of both 
elements are followed by electrical degrees of freedom of sandwich element. The 
transfer matrix analysis is used to derive a direct relation between the forces and 
displacements at left end of cell, input, and the right end of the cell, output. This 
analysis is applied on cell dynamic stiffness matrix defined by:  
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2ω−+=  (10)

 
Where K, S and M are the stiffness, motion-induced stiffness and mass matrices 

respectively. Since the dynamic stiffness matrix contains electrical degrees of 
freedom, they should be condensed first before applying the transfer matrix analysis. 
Putting the cell dynamic stiffness matrix on form: 
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Where kb, kD, and kbD, and kDb are the bending stiffness, electrical stiffness 

electro-mechanical coupling matrices respectively. The above equation can be 
rewritten as: 
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The above relation will be considered the starting point for the transfer matrix 

analysis as follows; Consider the cell sketched in Figure 2. It is required to find the 
input/output relation that takes the form: 
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i MFf = , i =1, 5. For ease of demonstration, 3-

node elements are assumed.  

  
Figure 2: Sketch of forces applied on one cell 
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Equation (12) can be written as: 
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Now the displacement W2, which include all internal nodes, will be condensed 

utilizing the second equation in the above matrix equation with f2={0}. After some 
mathematical manipulations, the above equation can be written as: 
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Matrix equation (15) will be converted into input/output form as described in 

equation (13): 
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The above equation represents an eigenvalue problem. It can be proven that 

each of eigenvalue is reciprocal of the other. To calculate the propagation factor µ the 
hyperbolic relation ( )( )µµµ −− += ee5.0cosh 1  may be used. Generally speaking, the 
propagation factor is a complex number. Its imaginary part represents the phase shift 
between the input and output. While the real part identifies the stop bands boundaries 
and attenuation factor.  

Numerical Results  

In order to attenuate the vibration of beam under vibration, the shunt circuit 
should be tuned to one of the beam natural frequencies. Since the geometric 
periodicity in beam configuration provides pass-stop bands, Figure 3, which attenuate 
some frequency ranges, the selected tuning frequency should lie in a pass band. The 
RLC (resonating) shunt circuit is tuned such that the selected tuning frequency is 
selected to be equal to a natural frequency of the beam. To demonstrate shunt circuit 
tuning and the corresponding attenuation, a beam made of aluminium of mass density 
(ρ) 2700 kg/m3, and Young’s modulus of elasticity (E) 71 GPa is selected. The beam 
has length 45cm, width 3.6cm and thickness 1mm. The geometric periodicity is 
introduced by dividing the beam to four identical cells of length 11.25cm. The length 
of the thin element (to the left) is 8.25cm while the thick element (to the right) is 3cm 
long. The thick element consists of base material (aluminium) and two identical 
piezoelectric patches bonded on both sides. The patches are 3.6cm wide, 3cm long 
and 1mm thick each. The mechanical and electrical properties of a patch are: 
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Modulus of elasticity E 68 GPa, mass density ρ 7800 kg/m3, dielectric constant ∈ 
2.37×10-8 Farad/m and piezoelectric constant d31 -320×10-12 m/V. Despite the 
existence of the piezoelectric pairs, the beam is exited at root and response is 
calculated at its tip. The results were validated by comparison with numerical and 
experimental results published in reference [ 22]. 

Figure 3 shows that the numerical results obtained for the frequency response of 
the plain and periodic beams without rotation together with the attenuation factor. 
Now, the natural frequency of 1024 Hz is selected as a tuning frequency for the shunt 
circuits but this requires investigating the optimal tuning conditions. Since the 
shunted piezoelectric patch slightly lowers the beam stiffness, the selection of tuning 
frequency should account for this reduction. Thus the optimum resistance and tuning 
frequency were found 1770 Ohm and 988Hz respectively. Figure 4 shows the tip 
response at optimum tuning conditions. It is clear from the figure that the peak at 
1024Hz disappeared and extra stop band appeared. This stop band connects the two 
neighbouring stop bands form one wide stop band that significantly attenuate all 
response in that range.  
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Figure 3: Periodic beam vs. plain beam (open circuit) 
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Figure 4: Periodic beam at optimum conditions (Freq.=988Hz, R=1770 Ohm , Non-rotating) 



ICSV13, July 2-6, 2006, Vienna, Austria 

-150

-100

-50

0

50

100

150

200

0 500 1000 1500 2000 2500 3000

Frequency

Ti
p 

R
es

po
ns

e 
(d

B
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
tte

nu
at

io
n 

Fa
ct

or

Frequency Response
Open Circuit
Attenuation Factor

 
Figure 5: Periodic Beam open circuit and optimum shunt circuit modes Rotation 

Speed=20Hz (Freq.988Hz, R=1700 Ohm, Hub Radius=0) 

At the current optimum tuning conditions, the beam rotational speed is 
increased, assuming zero hub-radius, to study how the rotation affects stop-pass 
bands. Figure 5 shows average attenuation factor, and the tip response for the beam 
under rotating conditions (20Hz). It is clear, from the figure, as the rotational speed 
increases, wider stop bands are generated with less attenuation levels. Also the stop 
bands, and natural frequencies moved to higher frequency values. This is due to the 
increase in the beam stiffness due to centrifugal force induced by rotation.  

CONCLUSIONS 

Form the results shown above; it is clear that geometrical periodicity has high 
ability to attenuate the vibration in some frequency bands (stop bands). Moreover, the 
passive shunting of the piezoelectric controllers with proper tuning introduces new 
stop band around the tuning frequency which increases vibration attenuation. Also, 
the increase of the rotational speed of the beam, the stop bands get wider but less 
attenuation factor is obtained. This leads to less attenuation level in the beam but 
increasing the frequency bands attenuated.  

The finite element code proved good agreement with published results, for all 
running conditions. Also, the selected 3-node, 6-mechanical DOF proved good 
results.   
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