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Abstract
In metal cutting the boring operation is known to be one of the most troublesome regarding
vibration. Boring bars are frequently subjected to vibrations originated from the load applied
by the workpiece material deformation process. These vibrations are easily excited due to the
boring bars general geometric dimensions, i.e. large length to diameter ratio. Large overhang
is usually required to perform internal boring operation and as a consequence the vibration
may frequently reach extremely high levels, which result in a poor surface finish, reduced tool
life and annoying noise level in the working environment. The vibration problem is directly
related to the first bending modes of a boring bar. Therefore investigations of the boring bar’s
spatial dynamic properties are of a great importance. The results from experimental modal
analysis show that a conventional analytical approach - calculation of boring bar eigenfre-
quencies using an Euler-Bernoulli model - results in rough estimates. This can be explained
by existing nonlinearities introduced e.g. in the areas of contact between the boring bar and
the clamping bolts as well as the clamping house, which is not considered in the analytical
model where the boring bar instead is assumed to be rigidly clamped. Therefore the estima-
tion of the eigenfrequencies and eigenmodes of a boring bar based on a 3-D finite element
model of the clamped boring bar incorporating contact between the bar and the bolts respec-
tive the clamping house is a more beneficial strategy. This paper addresses the estimation of
the boring bar’s first eigenfrequencies and corresponding eigenmodes based on the 3-D finite
element model. The results are compared with results obtained both from experimental modal
analysis and an analytical Euler-Bernoulli model.
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INTRODUCTION

In the modern manufacturing industry the problem of noise and vibration in the internal turn-
ing operation, in particular, remains to be considerable. In internal turning operations boring
bar vibrations frequently arise under the random excitation applied by workpiece material
deformation process at the frequencies correlated to the first eigenfrequencies of the boring
bar which correspond to the fundamental bending modes. Investigations in this area [6, 7]
showed that boring bar vibrations are dominating at the boring bar’s eigenfrequency in the
cutting speed direction since in this direction cutting force has the largest component. In
order to reduce the productivity and working environment degrading vibration problems in
internal turning the boring bar vibrations should be suppressed. This can be achieved by us-
ing different techniques, e.g. active and passive control [1, 8]. The level of success of utilizing
methods for the reduction of tool vibration is closely related to the knowledge of the dynamic
properties of the tooling structure - the interface between the cutting tool or insert and the
machine tool - involved [1].

Estimation of the dynamic properties of boring bars can be done using different ap-
proaches, the most common are experimental modal analysis, analytical modeling (Euler -
Bernuolli and Timoshenko models) and numerical modeling (finite element model).

A previous investigation concerning dynamic properties of the boring bar showed that
an analytical Euler-Bernoulli model overestimates eigenfrequencies of the boring bar com-
pared to the results obtained by experimental modal analysis [5]. This fact was explained by
difference between the boundary conditions used in the analytical model, where the boring
bar was assumed rigidly clamped, and the actual nonlinear boundary conditions of the bor-
ing bar, i.e. contact between clamping house, bolts and the boring bar. The examinations of
the boring bar response in a continuous boring operation revealed also existing nonlinearities
in the system ”boring bar - clamping house” [6]. Better correspondence between eigenfre-
quencies obtained experimentally and analytically can be achieved by linearizing the actual
boundary conditions - reducing the gap between the boring bar and clamping house [5]. How-
ever if more accurate estimate is desired without the changing the system the boring bar can
not be considered rigidly clamped, which means that modifications has to be done in the
Euler-Bernoulli model or another model should be considered.

The approach of identification of the boring bar’s spatial dynamic properties based on
numerical modeling, in particular 3-D finite element model, reveals itself to be more advanta-
geous. It gives a possibility to create boring bar and clamping house models which follow the
geometry of the real objects. It allows combining these two models and including nonlinear
boundary condition, i.e. contact between the boring bar, bolts and clamping house.

The paper addresses identification of spatial dynamic properties of the boring bar us-
ing experimental modal analysis, Euler-Bernoulli model and 3-D finite element model with
the focus on the last model. The results obtained using three approaches are compared and
discussed.
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MATERIALS AND METHODS

The experimental setup used in the experimental modal analysis, physical properties of the
boring bar material and the methods of identification of the boring bar spatial dynamic prop-
erties are described in this section.

Measurement Equipment and Experimental Setup

The experimental modal analysis was carried out on a MAZAK 250 Quickturn lathe. It has
18.5 kW spindle power, a maximum machining diameter of 300 mm and 1007 mm between
the centers. The following equipment was used to carry out experimental modal analysis: 14
PCB 333A32 accelerometers, 2 Ling Dynamic Systems shakers v201, 2 Brüel & Kjǽr 8001
impedance heads, HP VXI E1432 front-end data acquisition unit, PC with IDEAS Master
Series version 6.

Experimental modal analysis was performed on the boring bar clamped in the clamping
house with four bolts in the direction corresponding to the cutting speed direction. The boring
bar was simultaneously excited in the cutting speed direction and cutting depth direction by
two shakers (see Fig. 1). To measure spatial motion of the boring bar the accelerometers were
glued with distance 28 mm from each other starting at 25 mm from the free end of the boring
bar: 7 accelerometers in the cutting speed direction and 7 accelerometers in the cutting depth
direction.

Figure 1: Setup for the experimental modal analysis

Physical properties of the boring bar material

The boring bar used in experiments and modeling is a standard boring bar S40T PDUNR15
F3 WIDAX. It is made of 30CrNiMo8 material with following physical properties: Young’s
elastic modulus E = 205 GPa, density ρ = 7850 kg/m3, Poisson’s coefficient ν = 0.3.
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Analytical Euler-Bernoulli model

Since the boring bar is long and slender, an analytical Euler-Bernoulli model can be used to
estimate its natural frequencies and mode shapes. In the Euler-Bernoulli model the boring
bar is considered to be the system with distributed mass and infinite number of degrees of
freedom. This classical beam model considered only transverse beam vibrations and ignores
the shear deformations and rotary inertia. These affects are described by Timoshenko beam
model. However, if only the first modes are of interest the discrepancy between results ob-
tained using both models is negligible, thus the Euler-Bernoulli model can be used in this
application (see Fig. 2). The boring bar’s bending motion in the cutting speed direction can
be described by the following equation (bending motion in the cutting depth direction is de-
scribed by the same equation, where Ix is replaced by Iy) [2]:

ρA
∂2w(z, t)

∂t2
+

∂2

∂z2
[EIx

∂2w(z, t)
∂z2

] = f(z, t), (1)

The boring bar mode shapes can be calculated from Eq. 1 by setting f(z, t) = 0, which
corresponds to the case of free vibrations and using following boundary conditions:

EIx
∂2w(z, t)

∂t2
|z=0 = 0,

∂

∂z
[EIx

∂2w(z, t)
∂z2

]|z=0 = 0, w(z, t)|z=l = 0,
∂w(z, t)

∂z
|z=l = 0. (2)

Where ρ - density of boring bar material, A - boring bar’s cross section area, Ix and
Iy - cross-sectional area moments of inertia about ”x axis” and about ”y axis”, E - Young’s
elastic modulus, w(z, t) - bending deformation, f(z, t) - external excitation force. The area
and cross-sectional moments of inertia were calculated based on geometric dimensions of the
boring bar cross section (see Fig. 2). The following properties were used in Euler-Bernoulli
model calculations, here it was assumed that cross section area and cross-sectional moments
of inertia are constants: l = 0.2 m, A = 1.1933 ∗ 10−3 m2, Ix = 1.1386 ∗ 10−7 m4,
Iy = 1.1379 ∗ 10−7 m4.
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Figure 2: The dimensions of the boring bar used in Euler-Bernoulli model

The following notation for the coordinate system is used in Fig. 2: x - cutting depth
direction, y - cutting speed direction, z - feed direction.

The boring bar’s eigenfrequencies and eigenmodes are calculated from Eq. 1. The so-
lution of Eq. 1 is found using separation-of-variables procedure and boundary conditions in
the form of Eqs. 2.
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Experimental Modal Analysis

In experimental modal analysis the boring bar is considered as multiple degree-of-freedom
system. This approach uses measurement data of excitation force applied to the boring bar
and the boring bar’s responses collected simultaneously. Experimental modal analysis allows
to identify system’s eigenfrequencies, mode shapes, relative damping coefficients based on
the modal model which is described by [3]:

[H(f)] =
1
2π

N∑

n=1

Qn{ψ}n{ψ}T
n

jf − (−fnξn + jfn

√
1− ξ2

n)
+

Q∗
n{ψ∗}n{ψ∗}T

n

jf − (−fnξn − jfn

√
1− ξ2

n)
(3)

Where N -number of degrees-of-freedom, [H(f)] is N ×N receptance matrix, {ψ}n-
N × 1 mode shape vector, ξn-modal damping ratio, fn-undamped system’s eigenfrequency,
Qn-modal scaling factor. The estimate of receptance matrix is calculated based on power
spectral density and cross-power spectral density estimates of boring bar response signals and
excitation force signals correspondingly.

The first two boring bar eigenfrequencies and mode shapes in cutting speed and cut-
ting depth direction were calculated using polyreference least squares complex exponential
method [3]. The orthogonality of the extracted mode shapes was checked using Modal Assur-
ance Criterion [3]:

MACkl =
|{ψ}T

k {ψ}l|
({ψ}T

k {ψ}k)({ψ}T
l {ψ}l)

(4)

Finite Element Analysis

In the finite element analysis the system with distributed mass and infinite numbers of degrees-
of-freedom is approximated by the system with large but finite number of degrees-of-freedom.
The undamped dynamic motion of the system ”boring bar-clamping house” can be described
by the following equation:

[M ]{ẅ}+ [K]{w} = {f}, (5)

Where [M ] is mass matrix of the system, [K]-stiffness matrix of the system, {w} is
time and space-dependent displacement vector and {f}-time and space-dependent force vec-
tor.

The finite element models of the boring bar and clamping house were developed using
the MSC.MARC [9] (see Fig. 3). The finite element model of the boring bar follows the
geometry of the real boring bar. The tetrahedron with 10 nodes and quadratic shape functions
was used as a basic element for the boring bar model [9]. For simplicity the clamping house
and clamping bolts were modeled as one body. Also in order to reduce complexity of the
calculations the tetrahedron with 4 nodes and linear shape functions was used as a basic
element for the model of clamping house with bolts [4, 9]. Usage of linear finite elements will
not affect the accuracy of the results for boring bar’s eigenfrequencies, because the clamping
house eigenfrequencies are at significantly higher frequencies. The surface of the clamping
house which corresponds to the surface of the real clamping house attached to the turret was
rigidly clamped. In the compete ”boring bar - clamping house” model the contact between
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the sub-models of the boring bar and the clamping house was modeled without friction. The
system’s undamped eigenfrequencies and corresponding mode shapes were calculated from
Eq. 5 by setting {f} = 0 using Lanczos iterative method [4, 9].

x
y

z

Figure 3: The 3-D finite element model of the system ”boring bar - clamping house”

RESULTS

The first two eigenfrequencies and damping ratios calculated from Euler-Bernoulli model,
estimated by experimental modal analysis and the finite element model are presented in Table
1, the corresponding mode shapes components in the cutting depth and cutting speed direction
are shown in Fig. 4.

Table 1: Calculated eigenfrequencies and estimated damping ratios

Model Mode 1 Mode 2
Frequency,[Hz] Damping ratio,[%] Frequency,[Hz] Damping ratio,[%]

Euler-Bernoulli 698.12 - 698.33 -
Modal 497.494 1.112 525.832 1.571
Finite Element 533.129 - 558.256 -

As a quality measure of the mode shape estimates, obtained from experimental modal
analysis and the 3-D finite element model, the Modal Assurance Criterion was used. The
MAC - matrix for the modes 1 and 2 calculated according to Eq. 4 is:

[MAC]1 =
[

MACMA1,MA1 MACMA1,MA2

MACMA2,MA1 MACMA2,MA2

]
=

[
1.000 0.007
0.007 1.000

]
(6)
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Figure 4: a) Component of mode shape 1 in the cutting depth direction b) component of mode
shape 1 in the cutting speed direction, c) component of mode shape 2 in the cutting depth di-
rection d) component of mode shape 2 in the cutting speed direction estimated by experimental
modal analysis, Euler-Bernoulli model and finite element model correspondingly.

[MAC]2 =
[

MACFEM1,FEM1 MACFEM1,FEM2

MACFEM2,FEM1 MACFEM2,FEM2

]
=

[
1.00000 0.00001
0.00001 1.00000

]
(7)

Where MA1, MA2 mode shape estimates obtained from experimental modal analysis,
FEM1, FEM2 - mode shapes calculated from the 3-D finite element model.

To get a quantitative measure of correlation between mode shapes estimated by exper-
imental modal analysis and 3-D finite element model cross-MAC matrix was calculated:

[MAC]3 =
[

MACFEM1,MA1 MACFEM1,MA2

MACFEM2,MA1 MACFEM2,MA2

]
=

[
0.97656 0.02193
0.00738 0.96177

]
(8)
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CONCLUSIONS

From the results of identification of spatial dynamic properties of the boring bar it can be
observed that an analytical Euler-Bernoulli model overestimates the boring bar’s eigenfre-
quencies compared to experimental modal analysis results (see Table 1). Furthermore, the
estimates of the mode shapes obtained using experimental modal analysis demonstrate that
the first two boring bar’s mode shapes are orthogonal and rotated relative cutting speed and
cutting depth directions, which is not the case for the mode shapes calculated using the Euler-
Bernoulli model, where there is no angle between estimated mode shape and corresponding
directions (see Fig. 4). These differences in estimates can be explained for instance by contact
nonlinearity in the real system: between boring bar, bolts and clamping house, which is not
considered in the analytical model, etc.

It can be noticed that results obtained based on 3-D finite element model are more ac-
curate: the eigenfrequencies are closer to ones estimated by experimental modal analysis and
mode shapes are rotated respective cutting speed and cutting depth direction (see Table 1 and
Fig. 4, Eq. 8). Therefore the 3-D finite element model is preferable to the analytical Euler-
Bernoulli model because it allows to describe the geometry of the real system and incorporate
approximation of actual boundary conditions, i.e. contact between the surfaces of the boring
bar, clamping bolts and clamping house. However there is still discrepancy in results obtained
from 3-D finite element model and experimental modal analysis, which can be explained by:
imperfection of geometrical model of the boring bar, bolts and clamping house, differences
between actual material properties and ones used in simulations, uncertainty in measurements.
The results obtained using the 3-D finite element can for instance be improved by incorporat-
ing the affect of mass loading of the boring bar by 14 accelerometers and 2 impedance heads
used in the experimental modal analysis.
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