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Abstract 
Hydrodynamic interaction between a rotating shaft (journal) and its associated bearing is an 
indication of the load capability assessment of this system. Shaft deflection and roughness of 
the bearing surfaces are the significant causes in limiting the load capacities of journal 
bearings. The shaft deflection limits the load capacity of full journal bearings to magnitudes 
less than the value estimated by hydrodynamic theory. The higher the load on the shaft, the 
larger the journal misalignment resulted from shaft deformation, and the more obvious effect 
on lubrication performance of journal bearing. Structural dynamic analysis of machine or 
system presents the mode shapes, including the constraint modes and frequencies of the 
components as well as the natural frequencies and mode shapes of the complete machine or 
system. The flexible shaft mode shapes predict the possibilities of the edge loading or direct 
contact between journal-bearing and shaft. The objectives for this analysis presented in this 
paper are: 1) To estimate the stress generated on the bearing housing and transferred to 
machine casing or shell due to unbalance excitation on the rotor and/or bearing-housing 
misalignments during manufacturing. 2) The load capacity of the bearing with flexible shaft 
can be predicted to a rational order of magnitude. 3) The analysis results also show obvious 
changes at distribution and value of oil film pressure, oil film thickness and oil temperature of 
journal bearing due to journal misalignment.  

INTRODUCTION 

The dynamic behavior of a rotating machine is considerably affected by the 
characteristics of the flexibility of rotor and/or support of the machine. Rotor 
unbalance can also be caused by design, material, manufacturing and assembly. In 
reality this unbalance is an infinite number of unbalance vectors, distributed along the 
shaft axis of the rotor, of different magnitude and angular direction. The flexible rotor 
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should not be deformed more than an acceptable magnitude defined in the design 
running speed range. The journal bearing edge loading is one of the most important 
reliability issues in the rotating machines. A resonant in a lightly damped structure 
can result in excessive vibration response. In such cases it may be more feasible to 
alter the natural frequency or damping of the structure rather than to balance to very 
low vibration levels as a result of unbalance issue. Using a flexible rotor model 
gives more accurate analytical results than the rigid rotor model.  

The lubrication analysis is usually focused on tribological behavior without 
considering influences of other mechanical factors, so that the axis of the journal is 
usually supposed to be parallel to the center line of bearing. Shaft deformation caused 
by increasing load results in journal misalignment inside the bearing, thus lubrication 
state of the journal bearing will be influenced by the shaft deformation. Therefore, the 
shaft deformation should be considered in journal bearing and shaft design criteria as 
well as in the tribological analysis of journal bearing of machine.  

The design optimization process should be involved in the rotordynamic 
analysis when there is structural complicity associated with the machine components.  

DYNAMIC MODELING AND ANALYSIS OF A ROTOR SYSTEM 
WITH FLEXIBLE SHAFT 

 
Dynamic Modeling using the Analytical Method 
 
The planar rotor model is the simplest rotor model. This model considers only the 
motion of the rotor in the plane which is perpendicular to the rotating shaft. The 
geometric setup of the planar rotor model is shown in Figure 1. 
 

 
 

Figure 1. Geometric Setup of the Planar Rotor 
 
Rotating Machine with Unbalanced Masses 
 
The rotor system model represented in Figure 2a consists of a main mass (M – m) and 
two eccentric masses m/2 rotating in opposite directions with the constant angular 
velocity ω. The reciprocating eccentric masses exert on the main mass two vertical 
forces Fx that add up and two horizontal forces Fy that cancel each other out, 
therefore it is only necessary to consider the vertical motion x(t). By measuring the 
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displacement x(t) from the equilibrium position, the effect of the weight of the masses 
can be ignored in the equation of motion. The vertical displacement of the eccentric 
mass is x(t) + l sin ωt, so that the equations of motion in this direction for both m and 
(M-m) are given as 
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Substituting Fx from the Equation on left into the right one gives the equation of 
motion  
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Figure 2. Rotor system with rotating unbalanced masses 

 
The “Im” presents the imaginary expression. Hence, rotating eccentric masses exert a 
harmonic excitation on the system. The response is derived from Equation (1)  
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in which the phase angle |G(iω)| and φ are  presented as 
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Writing the steady state response of Equation (1) in the form  
 
 x(t) = X sin (ωt - φ) (4)  
 
Comparing Equations (2) and (4) gives 
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It is seen that for ω → 0, (ω/ωn)2|G(iω)|→ 0, and for ω → ∞ (ω/ωn)2|G(iω)| → 1. 
Equation (3) shows that as ω → ∞ φ → π. Since the mass (M – m) undergoes the 
displacement Im x, whereas the mass m undergoes the displacement Im (x + leiωt), it 
follows that for large driving frequencies ω the masses (M – m) and m move in such a 
way that the mass center of the system tends to remain stationary. This is true 
regardless of the amount of damping.  
 
Whirling of the Rotating Shafts 
 
In the rotating machines, on occasions some of the shafts experience violent 
vibration. To explain this phenomenon, let us consider a rotating shaft carrying a 
single disk. If the disk has some eccentricity, then the rotation produces a centrifugal 
force causing the shaft to bend. The rotation of the plane containing the bent shaft 
about the bearings axis is known as whirling. 

Figure 1 shows a shaft rotating with the constant angular velocity ω relative to the 
inertial axes x, y. The shaft carries a disk of total mass m at midspan and is supported 
elastically at both ends. Because the shaft has distributed mass, the system has an 
infinite number of degrees of freedom. However, if the mass of the shaft is small 
relative to the mass of the disk, then the motion of the system can be described 
approximately by the displacements x and y of the geometric center S of the disk. 
Although this implies a two-degree-of-freedom system, the x and y motions are 
independent, so that the solution can be carried out as for two systems with one 
degree of freedom each. 

As a preliminary to the derivation of the equations of motion, we denote the 
origin of the inertial system x, y by O and the center of mass of the disk by C, where 
C is at a distance e from S, as shown in Figure 1. The equations of motion involve the 
acceleration ac of the mass center C. To compute ac, we first write the radius   

 
rc = (x + e cos ωt)i + (y + e sin ωt)j,  ( ) ( ) jtsineyitcosexac ωωωω 22 −+−= &&&&  (6) 

 
To derive the equations of motion, we assume that the only forces acting on the 

disk are restoring forces due to the elastic supports and the elasticity of the shaft and 
resisting forces due to viscous damping. The elastic effects are combined into 
equivalent spring constants k.x and ky in the x and y directions, respectively. 
Moreover, we assume that c the coefficient of viscous damping is the same in both 
directions. Therefore, the equations of motion are written as 
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The steady-state solution of Equation (7) can be written as 
 

 x(t) = X(ω) cos (ωt - φx)     y(t) = Y(ω) sin (ωt - φy) (8) 
 



ICSV13, July 2-6, 2006, Vienna, Austria 

where the individual amplitudes in frequency domain are 
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and magnification factors and phase angles are defined as   
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Discussions: Case 1) the stiffness is the same in both directions, kx = ky = k. In this 
case, the two natural frequencies coincide and so do the viscous damping factors, or 
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Hence, in this case the shaft whirls with the same angular velocity as the rotation of 
the disk, so that the shaft and the disk rotate together as a rigid body. This case is 
known as synchronous whirl. It is easy to verify that in synchronous whirl the radial 
distance from O to S is constant, or 
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so that point S describes a circle about point O and presented by Equation (13). From 
Figure 1, it can be interpreted that the phase angle φ  as the angle between the radius 
vectors ros and rsc. It can be concluded that φ < π/2 for ω < ωn, φ= π/2 for ω = ωn, and 
φ> π/2 for ω > ωn.  

 
 

Figure 3. Synchronous whirl vs phase angles 
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The three configurations are shown in Figure 3. Concerning synchronous whirl, the 
magnification factor and the phase angle have the same expressions as in the case of 
the rotating unbalanced masses. This should come as no surprise as the two 
phenomena are entirely analogous.   

Case 2) the two stiffnesses are different (kx ≠ ky) and c = 0. In this case 
 

 x(t) = X(ω) cos ωt     y(t) = Y(ω) sin ωt (14) 
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Dividing the first of Equation. (14) by X(ω) and the second one by Y(ω), squaring and 
adding the results, yields 
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Hence, as the shaft whirls, point S describes an ellipse with point O as its geometric 
center, and Consider Equation (14) to understand more about the motion, and write 
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the sign of  depends on the sign of X Y. By convention, the sign of ω is assumed as 
positive, i.e., the disk rotates in the counter-clockwise sense. Thus, the following 
cases can be understood: 

θ&

a) ω < ωnx and ω < ωny. In this case X Y > 0, so that point S moves on the 
ellipse in the same sense as the rotation ω. 

b) ωnx < ω < ωny or ωny < ω < ω nx. In either of these two cases X Y < 0, so that 
S moves in the opposite sense from ω. 

c)  ω > ωnx and ω > ω ny. In this case X Y > 0, so that S moves in the ω direction. 
It is concluded that the possibility of resonance can be existed for the undamped case. 
There are two frequencies for which resonance is possible, ω = ω nx and ω = ω ny. 
Clearly, in the case of resonance, Equation (14) are no longer valid. The two 
frequencies ω = ω nx and ω  = ωnx are called critical frequencies.  

 

 
 ω < ωnx and ω < ω ny          ωnx < ω < ωny or  ωny  < ω < ω nx     ω > ωnx and ω > ω ny 

 
Figure 4. The three cases, asynchronous whirl  
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Machine Elements Structural Analysis 
 
Usually rotors are modeled using beam theory, with either the Euler-Bernoulli or the 
Timoshenko approach. Numerical solutions based on the transfer matrix method are 
also a common approach. In the study of the torsional behavior of shafts the structural 
parts are mainly modeled as beams. If the beams which model the rotor are straight, 
their axes are all aligned with the spin axis and if the centre of gravity and the shear 
centre of all the cross sections lay on the spin axis, then the axial, flexural and 
torsional behaviors are uncoupled. The presence of a small static or couple unbalance 
does not modify substantially this feature. The assumptions of linearity, small 
unbalance and small displacements allow obtaining a linear equation of motion; 
however, even in the case of the discretized model of a linear rotor which is axially 
symmetrical about its spin axis and rotates at a constant spin speed ω. If both stator 
and rotor are isotropic with respect to the rotation axis, the best choice for the 
generalized coordinates to study the flexural behavior is using the complex 
coordinates. The linearized equation of motion that are linearized in the neighborhood 
of an operating point constant rotating speed is of the type 
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where q is a vector containing the generalized complex coordinates, referred to an 
inertial frame, M and C are the symmetric rotor system mass damping matrixes, Gsk 
is the skew-symmetric gyroscopic matrix (it is usually linearly dependent on the pin 
speed ω, K is the symmetric rotor system stiffness matrix, Ksk is the skew-symmetric 
circulatory matrix, usually proportional to ω and f is a time-dependant vector in 
which all forcing functions are included. One of these forcing functions is usually due 
to the residual unbalance which, although small, cannot be neglected. Unbalance 
forces are harmonic functions of time, with amplitude proportional to ω2 and 
frequency equal to ω. When ω tends to zero, the skew-symmetric terms vanish and 
the rotor reduces to a structure. 

The finite element method has ability of complicated geometries modeling in a 
simple way. The Finite element codes are flexible and powerful enough, if they have 
some of the numerical features (such as gyroscopic effect, rotating damping and 
centrifugal stiffening) that are used for rotordynamics. 
 The transfer matrix method is mostly used in the rotor dynamic analysis. The 
advantage of the transfer matrix method to finite element technique is that it does not 
require the storage and manipulation of large system arrays. The transfer matrix 
method begins with the boundary conditions at one side of the system and 
successively proceeds along the structure to the other side including all the 
components. The solution should satisfy all the boundary conditions at all boundary 
points. The disadvantage of this method is that it is difficult to extend to time domain 
and nonlinear analysis. Therefore, it is difficult to use this method for active 
balancing controller design analysis. The resonant vibration amplitude is smaller than 
the corresponding amplitude if the spin speed is held constant at the critical speed.  
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Rotating Machine, Experimental Dynamic Analysis  
 
The experimental procedure is divided in three parts: 1) The Campbell diagram that 
gives the development of the eigenvalues of the rotor as a function of the rotation 
speed is established. 2) Unbalance response of the rotor is undertaken as a function of 
rotational speed. Typically the natural frequencies change with speed because of 
gyroscopic effects and bearing characteristics. 3) The influence of flexible support. 

For the isotropic supports and the symmetric rotor, an excitation (with a sweep 
sine approach) is acted on the bearing housing in order to evaluate the frequency 
response function of several rotating speeds. Whirl modes appear due to the 
asynchronous excitation given by the electromagnetic shaker. The Campbell diagram 
of the rotor that represents the natural frequencies as a function of rotational speed is 
illustrated in Figure 5. Note that when the first forward and backward modes start at 
different values indicating asymmetric properties for the rotor. 

      Forward Mode 

Backward Mode 

 
 
 
 
 
 
 
Figure 5: Unbalanced response: (a) it shows two responses: The first response at 2340 rpm 

(first backward critical speed) and the second response at 3080 rpm (the first forward critical 
speed).  (b) the Campbell diagram of the rotor (evolutions of the natural frequencies as a 

function of the rotational speed). 

(a) Rotating Speed (rpm) (b) Rotating Speed (rpm) 

 
Tribology and Lubrication criteria, Experimental Measurements  
 
When a rotating machine rotates, the centrifugal force produced by eccentric weight 
results in shaft deformation. The magnitude of journal misalignment corresponding to 
the magnitude of shaft deformation can be adjusted by regulating the magnitude of 
centrifugal force acting on the shaft. Assume the effect of weight gravity on shaft 
deformation is negligible comparing with the centrifugal force, in order of magnitude. 
The testing system rig is shown in Figure 6 consists of sensors, data acquisition and 
analyzing system. The sensors are installed separately on section A-A and section B-
B near the two ends and symmetric to the central section of the measured bearing and 
they are used to measure oil film pressure, oil film thickness, and oil film temperature 
near the surface of the bearing at any instant. The rotating angle and speed sensor 
measure the shaft speed and orientation of the load acting on the shaft along the 
circumferential direction.  

The shaft speed has been increased up to 3500 r/min. The results of these 
experiments are shown in Figure 6.  When shaft load (at the center of shaft) increases, 
the maximum film pressure and average film temperature generally increase, and the 
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minimum film thickness decreases. There is an indication of scratches at the edge of 
the bearing near section A-A. When the angle of journal misalignment is large at the 
time so that the minimum film thickness on section A-A is very small. Radial 
clearance has a large effect on average film temperature, the smaller the radial 
clearance, the higher the average film temperature.   
  
 
 
 
 
 
 
 
 

Figure 6: Sensors at A & B sections of journal bearing:  I) Pressure transducers: 1, 2, 3, 4. 
II) Whirl type sensors (Eddy current): 4 5, 6, 7, 8.  III) Thermocouples: 9, 10. 

IV) Speedometer sensor: 11. 
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Figure 7: The experimental results 
 

It should be noted that the shaft deformation with shaft load acting on the two 
sides of the shaft is smaller than that with the same load acting on the center of the 
shaft if other conditions are the same.  

The clearance of a bearing c of 0.045, bearing length L of 40 mm, and bearing 
diameter D of 30 mm with shaft load acting on the center and or at the two sides of 
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the shaft have been chosen in this experimental study. The experimental results are 
shown in Figures 7 

 
 

SUMMERY AND CONCLUSIONS 
 
An in depth knowledge of the dynamic behavior of rotating machines are required 
when high rotational speeds, lighter machines (higher performance), and working at 
higher stress levels are involved in the design of rotating components. The following 
concerns should be considered in the rotor dynamic analysis: 
1. Shaft deformation under load will cause journal misalignment in shaft-journal 

bearing systems. 
2.  Oil film pressure, oil film thickness, and oil temperature at corresponding 

positions of two sections, symmetric with respect to the central section of the 
bearing, are different when there journal misalignment occurs due to the shaft 
deformation. Changes of oil film pressure, oil film thickness and oil temperature 
of the bearing compared with a well-aligned bearing are seen clearly.  

3.  The differences of the values of the maximum film pressure, the minimum film 
thickness, and average film temperature at the two end sections symmetric about 
the central section of the bearing increase with shaft load, and the angle of journal 
misalignment result from increased shaft deformation. 

4. The smaller the ratio of radial clearance c to length L of a bearing, the more 
obvious the effect of journal misalignment becomes dominantly from shaft 
deformation, and affecting the values and distributions of oil film pressure, oil 
film thickness and oil film temperature in a journal bearing.  

5.  The effect of journal misalignment resulting from shaft deformation should be 
considered in journal bearing design, especially for cases of critical mechanical 
equipments.  
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