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Abstract 
The damping across the length scales (the nanoscopic scale 10 910 10 m− −− , mesoscopic scale 

8 610 10 m− −− , and macroscopic scale 510 m−> ), is investigating by considering the simplest 
theoretical instrument for the study of material damping - the pendulum. The free transverse 
vibrations of a pendulum consisting of a bob suspended from a wire are studied in two cases: 
(1) a molecule suspended from a carbon nanotube with a single wall, and (2) a bob suspended 
from a rod with microstructure.   

1.INTRODUCTION 

Eliminating vibrations and controlling dynamics in macro-, meso- and nano-world are 
subjects must addressed to applications in macro-electromechanical, micro-
electromechanical and nano-electromechanical structures. One of the major obstacles 
to miniaturization and to build useful micro- and nano-sized devices, involves 
changes to mechanical properties that can occur as the size of a system are below the 
macroscale toward the atomic scale.  

Also, it is of special interesting the fact it is not possible to grow materials 
without dislocations and defects to crystalline order, such as vacancies, interstitials, or 
impurities at the meso and nano scales. The damaged materials exhibit interesting 
damping properties.   

In this paper we study the damping across the nanoscopic scale 10 910 10 m− −− , 
mesoscopic scale 8 610 10 m− −− , and macroscopic scale 510 m−> , by considering the 
simplest instrument for the study of material damping, the pendulum [8]. We refer to 
internal damping, which results from mechanical-energy dissipation within the 
material due to various microscopic and macroscopic processes.  

Internal damping of materials originates from the energy dissipation associated 
with microstructure defects, such as grain boundaries and impurities. 
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2.TRANSVERSAL VIBRATIONS OF A PENDULUM 

Properties of materials are the result of phenomena at various length scales and 
require accurate modeling to capture the mechanics and physics at each length-scale. 

For nanoscopic and mesoscopic scales, the quasi-continuum method can be 
applied as an approximation theory to atomistic, which reduces to the exact atomistic 
theory when all the atomic degrees of freedom are considered [2, 9, 10]. Also, by 
reducing the number of the degrees of freedom for sets of identical atoms, the method 
is able to deal with mesoscopic structures such as cracks, grain boundaries and free 
surfaces in a uniform fashion.  

In this formulation we determine the total potential energy of a system as a 
function of the degrees of freedom (atom or FE nodal locations). Static equilibrium is 
obtained by minimizing the total energy. In dynamic simulations, the force is used in 
Newton’s second law to evolve the system in time.  

The total atomic energy is a sum of the atoms energies  
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E E
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Consider now the problem of free transverse vibrations of a vertical pendulum 
consisting of a bob suspended from a stiff wire. We study this problem in two cases: 

1. a molecule suspended from a carbon nanotube with a single wall; 
2. a bob suspended from a rod with microstructure. 
 For the first problem we apply the quasi-continuum method, and for the second 

the classical theory.  
A carbon nanotube is a cylindrical molecule composed of carbon atoms. The 

diameter of nanotube is 100000 times less that the diameter of the sawing needle. The 
carbon nanotubes are 100 times much stronger than steel wire, are the perfect 
conductor, and have thermal conductivity better than diamond. The application of 
these nanotubes, formed with a few carbon atoms in diameter, provides the possibility 
to fabricate devices on an atomic and molecular scale, with lightweight and high 
strength properties. A typical section of a single-walled carbon nanotube is illustrated 
in Fig. 2.1, each node being a carbon atom and lines the chemical bonds [7]. Fig. 2.2 
represents a damaged carbon nanotube with missing atoms in a region of the wall [1]. 

 

 
 Fig. 2.1. A section through a carbon nanotube viewed from the side [1]. 

 
For the carbon nanotube the modified Morse potential function is used 

stretch angleE E E= + ,                                            (2.1) 
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where stretchE  is the bond energy due to bond stretch 
2

0{[1 exp( ( )] 1}strechE D r rβ= − − − − ,                           (2.2) 

and angleE  is the bond energy due to bond angle-bending, 

2 4
0 0

1 ( ) [1 ( ) ]
2angle sE k kθ θ θ θ θ= − + − ,                         (2.3) 

where r  is the length of the bond, and θ  is the current angle of the adjacent bond, a 
standard deformation measure in molecular mechanics. The modelling of vibrations 
of the nano pendulum is based on (2.1)-(2.3), and the quasi-continuum method with a 
reduced degree of freedom. 

 
Fig. 2.2. A damaged carbon nanotube by missing atoms [1]. 

For the macro pendulum with mesoscopic damage, we use this motion equation 
in a dimensionless form 

[{ (1 ) 1} ] 0ivu x u uχ α α′ ′− − + + = , 0 1x≤ ≤ , 0 1t≤ ≤ ,              (2.4) 

where x  and t  are the dimensionless space and time variables, ( , )u x t  is the 
dimensionless displacement of the pendulum, χ  is the dimensionless stiffness, and 
α  is the mass ration of the wire to the bob. To represent the hysteretic damping we 
use a complex stiffness, consisting of a real part that correspond to the usual elastic 
stiffness and an imaginary part that corresponds to the hysteretic loss stiffness 

1 2iχ χ χ= + . The boundary and initial conditions are  

(0, ) (0, ) (1, ) (1, ) 0u t u t u t u t′ ′′ ′′′= = = = ,                               (2.5) 

( ,0) ( )u x f x= , ( ,0) ( )u x g x= .                                       (2.6) 

This problem (2.4)-(2.6) is investigated by employing the eigen-value approach 
with Laplace and Fourier transformations. The significant amounts of damping are 
possible at macro scale, by adding the external damping treatments. The damping 
levels are smaller at microscale, and may be much smaller at nanoscale. But, by 
knowledge of properties of nanostructures, we can control the wave motion and 
enhance energy dissipation.  

The stress σ  and strain ε  relations at a point in a vibrating continuum possess a 
hysteresis loop. The area of the hysteresis loop gives the energy dissipation per unit 
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volume of the material, per stress cycle. At the nanoscale, we try to find a class of 
constitutive laws by applying the pseudospherical reduction method for a mechanical 
problem [6]. By this reduction the motion equations are associated to a 
pseudospherical surface Σ  (with negative Gaussian curvature K ). If the ratio 

4/K d is constant, where d  is the distance from the origin to the tangent plane at an 
arbitrary point is constant, we obtain a Titeica surface [11, 12].  

The Titeica surfaces are invariants under the group of centroaffine 
transformations, being analogues of spheres in affine differential geometry.  

At present, only a few achievements have been made for determining the 
parametrical representation for a class of constitutive laws at the nanoscale level, for 
which the motion equations attached to the material system can be associated to a 
pseudospherical surface. We consider that this novel approach may improve the 
estimation of damping at different metric scales.  

The Titeica function associated to Titeica surface estimates the specific damping 

capacity D  (
max

UD
U
∆

= , where the initial energy of the system is denoted by maxU ). 

The ratio 4/K d is proportional to D . 

3.RESULTS 

In all simulations, the dimensionless space 0 1x≤ ≤  and time 0 1t≤ ≤  variables 
are used Consider first the nanopendulum, e.g. a single-walled nanotube of  

0.58µmL = ( 60.58 10 m−× ) length, with a diameter of td  satisfying 1 10
t

Lk
d

= = . The 

molecule is modeled as a rigid sphere of diameter bd  given by 2 5b

t

dk
d

= = .  The 

mass ration of the wire to the bob is 3α = . The parameters are  
10

0 1.39 10 mr −= × , 196.03 10 NmD −= × , 10 -12.63 10 mβ = × , 0 2.09radθ = , 
18 20.9 10 Nm/radkθ
−= × , -40.75radsk = . 

In Fig. 3.1 it is represented the Titeica function in term of the distance d  from 
the origin to the tangent plane at an arbitrary point of the associated Titeica surface, 
and 1k  ( 3α = , 2 5k = ). This function characterizes the capacity of damping for 
nanopendulum. The ratio 4/K d is proportional to D . 

.The time variation of dimensionless displacement of the bob suspended from a 
single-walled carbon nanotube is represented in fig.3.2. We see that the nonlinear free 
decay vibrations is not a pure exponential [3-5]. For a non damaged nanotube the 
decay is nonlinear, and after vibrations died out, the equilibrium position remains 
unchanged. The decay is due only by internal damping.  
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Fig.3.1. Titeica function for nanopendulum. 

 
Fig. 3.2. Nonlinear free decay vibrations of a molecule suspended from a single-walled 

carbon nanotube. 

The time history of the quality factor corresponding is obtained from Titeica 
function, and it is represented in fig. 3.3.  

We see from fig.3.3 that in first part of the decay, the Q  increases from below 4 toward 
the maximum of about 12. In the second part, the Q  decreases from 12 toward zero.  

The quality factor Q  for a pure exponential decay is constant.  Here, the Q  becomes 
time-dependent.  The mode coupling is significant here. When a pair of modes couple 
because of elastic nonlinearity, the strength of the coupling is proportional to the product of 
the individual amplitudes of the pair.  Consequently, variability in Q  can influence the 
evolution of vibrations. 

Next we consider that the nanotube is damaged by missing of some atoms in a 
portion of the wall (fig. 2.2). Fig. 3.4 represents the free decay vibrations of the 
system in this case.  

We see that the equilibrium position of the pendulum is shifting during 
vibrations. After vibrations died out, the equilibrium position remains shifted. We 
must remark that a similar behaviour was experimentally observed on different 
macroscopic scales [3-5].  
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Fig. 3.3. The time variation of the quality factor for a non-damaged nano pendulum. 

 
 

Fig.3.4. Free decay vibrations of the molecule suspended from a damaged single-walled 
carbon nanotube 

Consider now the second problem of a macroscopic vertical pendulum 
consisting from an elastic circular cross section rod of 5cmL =  length, with a 

diameter of td  satisfying 10
t

L
d

= . The bob is modeled as a rigid sphere of diameter 

bd  given by 5b

t

d
d

= .  The mass ration of the wire to the bob is 3α = .  

The parameters for aluminum are: Young modulus 70.3GPa , Poisson ratio 
0.345, density 2690 kg/m 3− . The time variation of dimensionless displacement of the 
pendulum is represented in fig.3.4. The free decay vibrations is also nonlinear. 

The shape of histories are different from the case of the nanopendulum, but the 
conclusion is the same - a nonlinear vibrations decay and the time-dependent quality 
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factor Q . The case of a macroscopic damaged macropendulum is too difficult to be 
treated without a coupled macro-mesoscopic theory.  

 

 
    Fig. 3.4. Free decay vibrations of the macroscopic pendulum. 

4.CONCLUSIONS 

The free transverse vibrations of a pendulum consisting of a bob suspended from a 
wire are studied in two cases: (1) a nanopendulum, and (2) a macroscale pendulum 
with microstructure.  

At the nanoscale, the damping analysis is performed by using a novel approach, 
e.g. the Titeica function associated to the Titeica surface corresponding to the motion 
equation of nanopendulum.  

The Titeica function is expressed as a function on the distance d  from the 
origin to the tangent plane at an arbitrary point of the associated Titeica surface, and 

the pendulum parameters 1
t

Lk
d

= , 2
b

t

dk
d

=  and α , where L  is the length of the 

single-walled nanotube, td  is its diameter, bd  is the diameter of the molecule 
modeled as a rigid sphere, and α  is the mass ration of the wire to the molecule.  

This function estimates the specific damping capacity 
max

UD
U
∆

= , where maxU  is 

the initial energy of the nanopendulum.  
The damping of macropendulum is analysed by classical theory. From this 

analysis it results that he decay of vibrations is not a pure exponential for both 
problems, and the quality factor Q  becomes time-dependent.  

An interesting result is obtained for a damaged nanopendulum. Its equilibrium 
position is shifting during vibrations. After vibrations died out, the equilibrium 
position remains shifted.  

As a conclusion, vibrational responses of the pendulum can be, especially for 
damaged materials, very complex, and cannot be explained by classical damping 
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models. It is clear from here that the pendulum is still important to engineering, in a 
fundamental sense of understanding of properties of materials.  
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