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Abstract

The tracking sensors acting in a tracking loop as stabilizer are mounted on a two degree of
freedom gyros. The gyro must align its rotor axis with the line of sight in order to remove
tracking errors. The tracking precision and sensitivity are functions of the gyros performance.
One of the main factors in reducing the precision and producing instabilities is nutation
vibrations. This fluctuating motion, which is a dynamical inherent property of the system, is
related to the gyro lateral moment of inertia, the length of gyro and its rotating speed. In order
to investigate the capabilities of nutation dampers, two models are presented: a simple
viscoelastic cantilever beam with a tip mass, another model of viscose liquid damper
containing mercury or oil in a ring. In each model presented here, the behaviour of the
damper and its subsystems are taking into account. The equation of motions for the
dynamical motion of Gyros, are obtained using Lagrangian approach, taking into account the
friction of the dampers and the interaction of the liquid with the system equations of motion.

INTRODUCTION

A set of optical components placed on the rotor of gyroscope. The optical set has the
duty of filtering, concentrating, separation and finally signal processing of received
waves. The mechanical set of Gyro consists of inner and outer gimbals, which can
sensitively rotate about two orthogonal axes. The magnetic rotor of gyro surrounds
these two axes. For increasing the accuracy, all the accuracy stealing factors should
be removed. One of the main factors which reduces the accuracy and even makes the
gyro unstable is the dynamical inherent property of the system called nutation.When a
moment-free inertially symmetric spinning body is subjected to an impulsive torque,
i.e, a suddenly applied torque with brief duration, it will result in coning (or
precession) motion of the spin axis about the angular momentum vector (which is
fixed in space in the absence of subsequent external torques). For removing this
nutation vibration, this paper investigates two dampers as. Voscoelastic and viscose

Eds.: M. H. A. Ngjar, Hasan Abedi, and Mgjid Sohrabian



M. H. A. Naar, Hasan Abedi, and Majid Sohrabian

dampers. The ring damper, partidly filled with fluid and mounted on the spinning
body (or the rotor of a gyroscope), has the effect in reducing the cone angle (or
nutation angle), so it has been extensively used in satellites to keep their orientation
and in gyroscopic seeker to confirm precise tracking. In present paper, the nutation of
a gyroscopic seeker, which carries a ring damper partialy filled with fluid and spins
at a high speed of 60 Hz, is anayzed. When the optical detector inside the rotor
detects the deviation of the target, the rotor is driven immediately to lock it by an
impulsive torque generated by the coil surrounding the rotor. From some
experimental observation, the shape of fluid in the ring looks like a crescent, so the
fluid in thering ismodelled asarigid slug in our analysis.

VICOSE DAMPER, DYNAMIC ANALYSIS

Theidealized rotor and fluid-filled ring are shown in Fig.1. Let H denote the height of
the ring damper to the point O which is center of mass of the gyroscope, 4R and D
the width and depth of the rectangular cross section of the ring, respectively, ythe
angle of fill of the fluid in the ring, and R the mean radius of the ring. The angular
momentum vector of the gyroscope h about the point O is fixed in space since the
gyroscope is free after application of an impulsive torque. Let the Cartesian
coordinate system X, Y, Z be the inertial reference frame with origin coinciding with
the mass center of the gyroscope and the Z axis parallel to 4. the Cartesian coordinate
system x,y,z is fixed on the rotor with origin coinciding with the center of the ring o'
and xy plane lying on the plane the ring damper. The system u,v,z is fixed on the slug
with the u axis passing through its center of mass, the angle  measured from the x
axisto the u axisisthe angular displacement of the slug relative to the rotor.

Figure 1 —Idealized rotor and Fluid-Filled ring

The Euler's parameters p=(eo,e1,e2,e3)", which are a quaternion, are introduced here
instead of Eulerian angles to describe the orientation of the rotor with respect to the
system X,Y,Z. the reason is that quaternion have no inherent geometrical similarities
and no singularities in kinematic differential equations, but Eulerian angles have. In
term of Euler's parameters, the rotational transformation matrix A from system X,Y,Z
to system x,y,z can be expressed as the product of two 3x4 matrices as:
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eg + elz - e22 - e§ 2(e.8, — €483) 2(eg8, +€.85)
A=EG"=| 2(ee,+ee;) e—e’+ei—e2 2(er,—e8)
2(9193 - eoez) 2(e0e1 + ezea) eg - elz - e22 + e§ ( l)
Where
-e € -e€ &g -e € € -—e
E=|-¢e, e, e, —€ G=|-e, —-e, & €
—-€ -8 € € & -6 €& -€ & (2)

These Four Euler's parameters are not independent, and they satisfy the following
constraint equation:

pp' =1 3

Let o=(o,.0,,0,)" ad o' = (0,0, 0,)" denote the angular velocity of the rotor in the

X,Y,Z system and Xx,y,z system, respectively, they satisfy the following kinematic
eguations:

0=Ao'=2Ep=-2Ep 4)

o' =2Gp=-2Gp (5)

Multiplying both sides of Eq.(5) by GT , and using Eq. (3) and the following identity,

G'G=-pp" +1,, (6)
One obtains: p= %GT(,,' (7)
EQUATION OF MOTION

The inertia matrix I, of the rotor about the point O in the x,y,z system is defined as

I, =diag(J.J.J3) \Where J;, J, and Js are the moments of inertia of the rotor about the
X,y,z axes. The inertia matrix I, of the mercury about the point o in the u,v,z system

is:
I, 0 -1,
Iﬂ,{o I, o]
-1, 0 1,

Wherethevaluesof Iy, I,, I3 and I, are:
7 m R?
Iy =1, = [ (v +2°)dm = 2> (R’Sin*0 + Hz)dQ:m{H2+(1— K)}
0 14 2
’ m R?
I, =1, = [(u*+2°)dm = 2[?(R*C0s’0 + H?) —=df = m H? + = (1+ K)
0 7/ 2
z m
=1, :j(u2 +v?)dm = 2_[02R2(8in29+C0529)—d9: mR?
4

7
I, =1, = [uzdm = ZJZm—HRCostH: MRHK

°
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: in?
K=Sm}/,K’=SI;A, m = )RDpAR

T

The kinetic energy T, of therotor is:

T, = %w”lgw’ = %[\] (0] + o))+ Jga)f]

Thekinetic energy T, of thefluidis:
T - %szfzmsws - %{(IlCosz,B £1,5i2B)a? + (1,Cos? B+ 1,8in° f)o? + 1,? +

1LA* + (1, - 1,)Sin20,0, - 21,Cosfw,0, - 21,Sinfo,o, — 21,Cospfo, - 21,Sinppw, + 21, fo,

Where B is the transformation matrix from system x,y,z to system u,v,z.

Cosp sing 0]  and o, =(a)x,60y,60Z +/?)T
B=|-Sing Cosp 0

0 0 1

The gravitational potential V,, of thefluidis:
V. =-mg" AB"(RK',0,H)’
=migH (€} —e —¢; +&})- RK'[2gCose,e, —ee.) - 2gSinB(e.e, e, )l

Where g=(00,g)" iS the gravity with components parallel to X,Y,Z. Using the
Lagrange multiplier method, the equations of motion of the gyroscope are:

d(oL) oL _ 8
dt[apj o ©
d(@F]_GL:QS ©)
dtlog) op

where L=Tg+Tm-Vvm is the Lagrangian of the gyroscope, A is the Lagrange multiplier
due to the constraint Eq.(3), Qp is the generalized force resulting from the
gravitational force of the fluid, and Qg is the generalized force due to the frictional
force between the fluid and the wall of the ring. The above equations of motion are
five nonlinear second-order ordinary differentia equations and one nonlinear
algebraic equation for six unknowns, i.e., p, B, and A,. In order to avoid solving the A
and the constraint equation, as well as to reduce the number of governing equations,
the arguments PinL are replaced by the quasi-coordinates ©'. Thus, L(p,p,3. /)
becomesi (p, o, 5, ) - Using the chain rule, one has:

oL _ oL 0w

op;, o o, (10)
oL _ oL dw; . oL
op; Ow; dp; Ip; (11)

From Eq.(5) and the following identity
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o' =2GG" =2GG" (12)
Where
0 -0, o
o= o, 0 -o,
-0, o, 0
One obtains: B
Lt (13)
op oo’
L gl
op oo’ Op (14)
From Eqgs.(13) and (14), Eq.(8) can be rewritten as:
26" 4y agr g, (15)
dt oo’ oo 0Op

Premultiplication of Eq.(15) by G and using two identities, i.e., GG'=I And Gp=0,
one has: - - -

dby md 1o (16)
dt do’ oo 2 Op

Then the equations of motion can be recast in the following form:

LIPS S O
dt oo’ oo 2 Op (17)
d oL, oL

G -2-=Q,

top op

1
- :7GT(D'
P=5

Frictional Force

Since the shear stressis alinear function of the gradients of velocities with respect to
gpatial coordinates from the viewpoint of viscous fluid mechanics, we assumed that
the frictional force Fp between the mercury and the wall of thering is proportional od
virtual work, one can obtain the generalized force resulting from F), as:

Qs = _Cd Rzﬂ (18)
The equivalent Reynolds number of a straight rectangular pipeis:

_U,D, RB 2DAR

R, —
v v (D+AR)

Where v is the kinematic velocity. Since the cross-sectional area of the ring is small
and the spin rate of the rotor is high in our case, the magnitude of the Reynolds
number id of order 10* on an average. So the evaluation of shear stress from turbulent
flow must be considered. For the turbulent flow, the shear stress 1o on the wall of a
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straight pipe with circular cross section is:
7 = 0.0791R, (¥ pU?) (19)

where p is the density of fluid and U, is the average flow velocity (U =Rg).
Considering the effect of the curved pipe with circular cross section, Eq.(19) is

modifies as.
Tio ~1+0075R/*(Pr/] ) (20)
where Dy, is diameter of the circular cross section. The Dy, in Eq.(20) is replaced by

_2DAR  for the curved pipe with rectangular cross section. Equating the frictional
(D + AR)

force Fp to the shearing force which is obtained by multiplying the shear stress by the
common contact area of the fluid slug and thering, i.e.,

F, =C,RA=2(D+AR)Ryr (21)

we can evaluate the damping coefficient cq. Substituting Egs.(19) and (20) into (21)
and using #=(e-12. one has

Y
C, = 6.65x102p(D + AR){(DS AARR)U} Ryl(o ~DRa, 4 +5.93x10° p[(D + AR)D AR}2R % (0 ~ oo, (22)
Whereo = ‘]% .
State Equations

Considering state vector x as X =(e,,e,.e,,e,,o,,0,,0,,4,4)" and using Egs.(17) and
(22) we can write the state form of dynamic equationsin the form of x - g(x) where:

X5
1GT|:x6] (23)
g=|2
Xq
M'f
Hence,
J +1,Co8* X, +1,Sin?*X %Sinzx9 -1,CosX, —1,CosX, O
“ %SinZXg J+1,C082X, + 1,Sin?X, —1,SinX, —1,SinX, O
- ~1,CosX, —1,SinX, I +J, I, 0
—1,CosX, ~1,5inX, 1, 1, 0
0 0 0 0 1] (24)
and,
f:[fl f, fs f4]T (25)

Where,
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|1_ Iz
2

+(1,5INX ) X2 = (1,5INX ) X 2 + [(1, = 1,)SIn2X [X X, +[(1, = 1,)C082X, — 1,]X X,

—(21,5inX,) X, X, — (1,5InXg) X2 + 2mgH (X, X, + X, X,) + MgKR(=X 2 + X2 + X2 = X 2)SinX,

f, = (1,COSX ) XX + (3 = I, — I, + 1,Sin®X,, + 1,C087X ) X X, + (

SiN2X,) XX,

. . -1, .
o = (S1SINX )X X + (1 =3+ 35 = 181" Xy~ 1,C08*X5) X X, + (2= 8In2X ) X X1

—(1,C08X g)X 2 + (1,Co8X o) X 2 +[(1, = 1,)Sin2X ¢ [X s X5 +[15 + (1, = 1,)C082X 4 X s X
+(21,C08X ) X, X + (1,C08X o) X 2 + 2mgH (X, X, — X, X, ) + mgKR(X? — X2 — X2 + X2)CosX

I, ..
2 5in2X  )(X 2 — X 2)

. I, -
fy=[(1, = 1,)C082X 4 [X s X ¢ + (1,SinX o) X5 X, — (1,C08X o) X g X5 + (-2 5

—-2mgKR(X, X, + X;X,)CosX, + 2mgKR(X, X, — X, X;)SinX 4

f,=[(1, = 1,)C082X 4 [X X — (1,C08X g) X s X, + (1,SinX g) X5 X, +(Il ; £ Sin2X,)(X2 - X2)

—2mgK R(X, X, + X3X,)CosX 4 + 2mgK R(X , X, — X, X,)SinX, —C,R?S

NUMERICAL RESULTS

Implementing above equations for two type of fluid such as mercury and oil with
following values of parameters, nutation angle variation versus time is displayed in
Figs.2 and 3. As shown in these figures, mercury-filled ring damper has better
performance to reducing nutation angle than oil-filled ring damper.

R =16.71mm,AR = 1.4mm,H = 30.39mm, D = 0.78mm,» = 1.33Rad, J = 400g - cm?,J, = 600g —cm®
Puerary =13.69/cm®, v =0.00117cm? /s, po, = 0.912g/cm®, vy, =4.2cm? /s
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Figure 2 — Nutation angle variation for a) Mercury-Filled Damper & b) oil-Filled Damper
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VISCOELASTIC DAMPER

The smplest form of viscoelastisity is a combination of Hookean Solid and
Newtonian Liquid. The linear viscoelastic behaviour is modelled by Mechanical
models, which are composed of set of springs and dampers. One of them is Kelvin
model that is composed of alinear spring and a damper, which are jointed in parallel.
Generally these kinds of dampers are used in different forms on rolling axis gyroptics.
Here, the Kelvin's model is used. Martin [7] showed that an elastomer damper was
better than a fluid viscose damper from the point of stability.

This elastomer damper is made of a viscoelastic cantilever beam and a rigid body at
the end. For simplifying effects of gimbals are neglected. This gyro consists of amain
mirror and a secondary mirror. Origin of the inertial fixed coordinates of oxyz is
assumed to be on center of gravity of the system. The new system of ox,y,z,is made

by rotating the inertial system about y axis in amount of « .axisof y and y, coincide
on axes of ball bearing of the outer gimbal. By rotating system of ox,y z,about
X,inamount of a.,, system of ox,y,z, isgenerated. X, axesisthe axes of inner ball

bearing gimbal. Spinning rate of the main rotor is shown byy . For increasing and
raising the vibration absorption, atip body is applied in the end of damper. Figure 3
shows modeling of this damper.

Solid weight

Viscoelastic beam

r ;
iy
.

N\

Fi

~

Figure 3 — Ideal Model of elastomer damper
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State space form equations are extracted from lograngian equations as:
=Xy =X, 5 0, =X5 5 @, =X, 5, ¥=X; LPzXe s S=X,, S:Xa

V = 2bx,X,SinX, +b,x,x,’CosX, ~b,CosX,F  F = (b+x,)(X,°Cos®%, + X,*) — (K /M)x, — (17/ M)xq
We would have:

3 [—mv+ mRy/z+BW¥X,CosX, — X,(-2c,X,SinX ,CosX , + kn)]

k,=k o X, =X, , X, = X. =X
nomy T e I-c,Sin?X, +k, —m2R? / z—mb,’Cos? X, | PR

X,=(=y-MmRX,)/z 4 Xo=X, 5 Xg=X,SinX;+ X,X,C08X, 5 X, =X, 5 X, =bX,Co8X,+F

A simulation program is written and figures 4 & 5 show the results for a practical
example. The parameters are: 1, =diag(AP,AP,CP): Inertial matrix of the main rotor,
I, =diag(AS, AS,CS) : Inertial matrix of the secondary rotor, K: stiffness coefficient,
n: damping coefficient, L,:length of the place where model of damper locates,
S: tranglation of the mass on the head of damper, m: mass effect of beam and damper,
ae, +be,:end of cantilever beam location vector, r. =(a+L,)e +(b+s)e,:location
vector of the mass and:

b,=a+L, , A=Ap+As+mb® , k1=(Ap+As)cosze+(Cp+Cs)sin29+m[(2b2+2bs+sz)00329+2b12]

Here, as a practical example, a system studied which the rolling speed of the main
and the secondary mirror were the same, so «=1 and as a result, c,=c,. For

simulation of this system and computer programming, equations are altered to State
gpace form equations of x=f(xu. The parameters have the value of:
b=0.08m, m=00lkg , a=0.01m , C, =0.00016kgm* , A =0.000086666kgm”

gyroscope Trajectory

A D

98 4095
Figure 4— Gyroptic motion path
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Figure 5— Nutation angle variation for Viscoelastic damper

SUMMARY

On this paper the effect of parameters of two kinds of dampers on the decay of
wobble motion of the rotor is analyzed. Complete nonlinear equations of motion are
adopted here on the parameter anaysis, since the use of simplified equations of
motion may lose something important. Coupled equations of motion are derived in
terms of quasi-coordinates in order to reduce the number of equations of motion. The
shearing force between rotor and the fluid is obtained by assuming a steady turbulent
flow over a straight pipe. Finally, after comparing two different fluid types such as
mercury and oil on viscose dampers, Viscoelastic dampers are studied.
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