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Abstract 
The tracking sensors acting in a tracking loop as stabilizer are mounted on a two degree of 
freedom gyros. The gyro must align its rotor axis with the line of sight in order to remove 
tracking errors. The tracking precision and sensitivity are functions of the gyros performance. 
One of the main factors in reducing the precision and producing instabilities is nutation 
vibrations. This fluctuating motion, which is a dynamical inherent property of the system, is 
related to the gyro lateral moment of inertia, the length of gyro and its rotating speed. In order 
to investigate the capabilities of nutation dampers, two models are presented: a simple 
viscoelastic cantilever beam with a tip mass, another model of viscose liquid damper 
containing mercury or oil in a ring. In each model presented here, the behaviour of the 
damper and its subsystems are taking into account. The equation of motions for the 
dynamical motion of Gyros, are obtained using Lagrangian approach, taking into account the 
friction of the dampers and the interaction of the liquid with the system equations of motion.  

INTRODUCTION 

A set of optical components placed on the rotor of gyroscope. The optical set has the 
duty of filtering, concentrating, separation and finally signal processing of received 
waves. The mechanical set of Gyro consists of inner and outer gimbals, which can 
sensitively rotate about two orthogonal axes. The magnetic rotor of gyro surrounds 
these two axes. For increasing the accuracy, all the accuracy stealing factors should 
be removed. One of the main factors which reduces the accuracy and even makes the 
gyro unstable is the dynamical inherent property of the system called nutation.When a 
moment-free inertially symmetric spinning body is subjected to an impulsive torque, 
i.e., a suddenly applied torque with brief duration, it will result in coning (or 
precession) motion of the spin axis about the angular momentum vector (which is 
fixed in space in the absence of subsequent external torques). For removing this 
nutation vibration, this paper investigates two dampers as: Voscoelastic and viscose 
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dampers. The ring damper, partially filled with fluid and mounted on the spinning 
body (or the rotor of a gyroscope), has the effect in reducing the cone angle (or 
nutation angle), so it has been extensively used in satellites to keep their orientation 
and in gyroscopic seeker to confirm precise tracking. In present paper, the nutation of 
a gyroscopic seeker, which carries a ring damper partially filled with fluid and spins 
at a high speed of 60 Hz, is analyzed. When the optical detector inside the rotor 
detects the deviation of the target, the rotor is driven immediately to lock it by an 
impulsive torque generated by the coil surrounding the rotor. From some 
experimental observation, the shape of fluid in the ring looks like a crescent, so the 
fluid in the ring is modelled as a rigid slug in our analysis.  

VICOSE DAMPER, DYNAMIC ANALYSIS 

The idealized rotor and fluid-filled ring are shown in Fig.1. Let H denote the height of 
the ring damper to the point O which is center of mass of the gyroscope, ∆R and D 
the width and depth of the rectangular cross section of the ring, respectively, γ the 
angle of fill of the fluid in the ring, and R the mean radius of the ring. The angular 
momentum vector of the gyroscope h about the point O is fixed in space since the 
gyroscope is free after application of an impulsive torque. Let the Cartesian 
coordinate system X, Y, Z be the inertial reference frame with origin coinciding with 
the mass center of the gyroscope and the Z axis parallel to h. the Cartesian coordinate 
system x,y,z is fixed on the rotor with origin coinciding with the center of the ring o' 
and xy plane lying on the plane the ring damper. The system u,v,z is fixed on the slug 
with the u axis passing through its center of mass, the angle β measured from the x 
axis to the u axis is the angular displacement of the slug relative to the rotor. 
 

 
Figure 1 –Idealized rotor and Fluid-Filled ring 

The Euler's parameters p=(e0,e1,e2,e3)T, which are a quaternion, are introduced here 
instead of Eulerian angles to describe the orientation of the rotor with respect to the 
system X,Y,Z. the reason is that quaternion have no inherent geometrical similarities 
and no singularities in kinematic differential equations, but Eulerian angles have. In 
term of Euler's parameters, the rotational transformation matrix A from system X,Y,Z 
to system x,y,z can be expressed as the product of two 3×4 matrices as: 
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These Four Euler's parameters are not independent, and they satisfy the following 
constraint equation: 
 1. =Tpp  (3) 
Let T

ZYX ),,( ωωω=ω  and T
zyx ),,( ωωω=′ω  denote the angular velocity of the rotor in the 

X,Y,Z system and x,y,z system, respectively, they satisfy the following kinematic 
equations: 
 pEpEωAω && 22 −==′=  (4) 
 pGpGω && 22 −==′  (5) 

Multiplying both sides of Eq.(5) by GT , and using Eq. (3) and the following identity, 

 
)44( ×+−= IppGG TT  (6) 

One obtains:       ωGp T ′=
2
1

&         (7) 

EQUATION OF MOTION 

The inertia matrix Ig of the rotor about the point O in the x,y,z system is defined as 
),,( 3JJJdiag=gI , Where J1, J2 and J3 are the moments of inertia of the rotor about the 

x,y,z axes. The inertia matrix Im of the mercury about the point o in the u,v,z system 
is: 
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Where the values of I1, I2, I3 and I4 are: 
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The kinetic energy Tg of the rotor is: 
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The kinetic energy Tm of the fluid is: 
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Where B is the transformation matrix from system x,y,z to system u,v,z. 
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The gravitational potential Vm of the fluid is: 
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Where Tg),0,0(=g  is the gravity with components parallel to X,Y,Z. Using the 
Lagrange multiplier method, the equations of motion of the gyroscope are: 
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where  Vm-TmTgL += is the Lagrangian of the gyroscope, λ is the Lagrange multiplier 
due to the constraint Eq.(3), QP is the generalized force resulting from the 
gravitational force of the fluid, and Qβ is the generalized force due to the frictional 
force between the fluid and the wall of the ring. The above equations of motion are 
five nonlinear second-order ordinary differential equations and one nonlinear 
algebraic equation for six unknowns, i.e., p, β, and λ,. In   order to avoid solving the λ 
and the constraint equation, as well as to reduce the number of governing equations, 
the arguments p&  in L are replaced by the quasi-coordinates ω′ . Thus, ),,,( ββ &&ppL  
becomes ),,,( ββ &ωpL . Using the chain rule, one has: 
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From Eq.(5) and the following identity 
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One obtains: 
 

ω
G

p
T

′∂
∂

=
∂
∂ LL 2
&

 (13) 

 pω
G

p
T

∂
∂

+
′∂

∂
−=

∂
∂ LLL &2

 (14) 

From Eqs.(13) and (14), Eq.(8) can be rewritten as: 
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Premultiplication of Eq.(15) by G and using two identities, i.e., GGT=I And Gp=0, 
one has: 
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Then the equations of motion can be recast in the following form: 
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Frictional Force 

Since the shear stress is a linear function of the gradients of velocities with respect to 
spatial coordinates from the viewpoint of viscous fluid mechanics, we assumed that 
the frictional force FD between the mercury and the wall of the ring is proportional od 
virtual work, one can obtain the generalized force resulting from FD as: 

 β&2RCQ ds −=  (18) 

The equivalent Reynolds number of a straight rectangular pipe is: 

)(
2
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R hm
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∆
==

ν
β

ν

&  

Where ν is the kinematic velocity. Since the cross-sectional area of the ring is small 
and the spin rate of the rotor is high in our case, the magnitude of the Reynolds 
number id of order 104 on an average. So the evaluation of shear stress from turbulent 
flow must be considered. For the turbulent flow, the shear stress τ0 on the wall of a 
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straight pipe with circular cross section is: 

 )2
1(0791.0 24

1

0 me UR ρτ −=  (19) 

where ρ is the density of fluid and Um is the average flow velocity ( β&RU m ≅ ). 
Considering the effect of the curved pipe with circular cross section, Eq.(19) is 
modifies as: 
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where Dh is diameter of the circular cross section. The Dh in Eq.(20) is replaced by 

)(
2

RD
RD

∆+
∆  for the curved pipe with rectangular cross section. Equating the frictional 

force FD to the shearing force which is obtained by multiplying the shear stress by the 
common contact area of the fluid slug and the ring, i.e., 

 γτβ RRDRCF dD )(2 ∆+== &  (21) 

we can evaluate the damping coefficient cd. Substituting Eqs.(19) and (20) into (21) 
and using zωσβ )1( −≅& , one has 
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Where J
J 3=σ . 

State Equations 

Considering state vector x as T
zyxeeee ),,,,,,,,( 3210 ββωωω &=X  and using Eqs.(17) and 

(22) we can write the state form of  dynamic equations in the form of )(XgX =&  where: 
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and, 
 [ ]Tffff 4321=f  (25) 
Where, 
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NUMERICAL RESULTS 

Implementing above equations for two type of fluid such as mercury and oil with 
following values of parameters, nutation angle variation versus time is displayed in 
Figs.2 and 3. As shown in these figures, mercury-filled ring damper has better 
performance to reducing nutation angle than oil-filled ring damper. 
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Figure 2 – Nutation angle variation for a) Mercury-Filled Damper  &  b) oil-Filled Damper   

(a) (b) 
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VISCOELASTIC DAMPER 

The simplest form of viscoelastisity is a combination of Hookean Solid and 
Newtonian Liquid. The linear viscoelastic behaviour is modelled by Mechanical 
models, which are composed of set of springs and dampers. One of them is Kelvin 
model that is composed of a linear spring and a damper, which are jointed in parallel. 
Generally these kinds of dampers are used in different forms on rolling axis gyroptics. 
Here, the Kelvin’s model is used. Martin [7] showed that an elastomer damper was 
better than a fluid viscose damper from the point of stability. 

This elastomer damper is made of a viscoelastic cantilever beam and a rigid body at 
the end. For simplifying effects of gimbals are neglected. This gyro consists of a main 
mirror and a secondary mirror. Origin of the inertial fixed coordinates of oxyz is 
assumed to be on center of gravity of the system. The new system of ppp zyox is made 
by rotating the inertial system about y axis in amount of 1α .axis of y  and py  coincide 
on axes of ball bearing of the outer gimbal. By rotating system of ppp zyox about 

px in amount of 2α , system of nnn zyox  is generated. nx  axes is the axes of inner ball 
bearing gimbal. Spinning rate of the main rotor is shown byψ& . For increasing and 
raising the vibration absorption, a tip body is applied in the end of damper. Figure 3 
shows modeling of this damper.  

 

 
 

 

 
 

Figure 3 – Ideal Model of elastomer damper 
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State space form equations are extracted from lograngian equations as: 
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A simulation program is written and figures 4 & 5 show the results for a practical 
example. The parameters are: ),,( CPAPAPdiagI p = : Inertial matrix of the main rotor, 

),,(s CSASASdiagI = : Inertial matrix of the secondary rotor, K: stiffness coefficient, 
n: damping coefficient, 1L :length of the place where model of damper locates, 
S: translation of the mass on the head of damper, m: mass effect of beam and damper, 

31 beae + :end of cantilever beam location vector, 311 )()L( esbearE +++= :location 
vector of the mass and: 

11 Lab +=  , 2mbAsApA ++=  , [ ]2
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22222
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Here, as a practical example, a system studied which the rolling speed of the main 
and the secondary mirror were the same, so 1=α  and as a result, 12 CC = . For 
simulation of this system and computer programming, equations are altered to State 
space form equations of ),( uxfX = . The parameters have the value of: 

mb 08.0= , kg 0.01m =  , 0.01ma =  , 200016.0 kgmC p =  , 2000086666.0 kgmAp =  
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Figure 4– Gyroptic motion path 
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Figure 5– Nutation angle variation for Viscoelastic damper 

 

SUMMARY  

On this paper the effect of parameters of two kinds of dampers on the decay of 
wobble motion of the rotor is analyzed. Complete nonlinear equations of motion are 
adopted here on the parameter analysis, since the use of simplified equations of 
motion may lose something important. Coupled equations of motion are derived in 
terms of quasi-coordinates in order to reduce the number of equations of motion. The 
shearing force between rotor and the fluid is obtained by assuming a steady turbulent 
flow over a straight pipe. Finally, after comparing two different fluid types such as 
mercury and oil on viscose dampers, Viscoelastic dampers are studied.  
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