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Abstract  
The traditional methods for obtaining frequency equations and plotting dispersion curves are 
usually based on determination of the zeros of the frequency equation by an iterative find-
root algorithm. This approach is very time consuming and prone to numerical errors. In this 
paper a new method is proposed in which the dispersion curves are extracted from a three-
dimensional illustration of the frequency equation. The method starts with plotting of a three-
dimensional representation of the frequency equation. Then, by a suitable cut along the phase 
velocity-frequency plane of this graph, the dispersion curves, which are the numerical 
solutions of the frequency equation, are obtained. Compared to the traditional methods, this 
approach is very fast and simple. The possibility of numerical errors is very low and the final 
results are presented in a very convenient graphical form.  

INTRUDUCTION 

The problem of wave propagation in circular cylinders was first studied in terms of 
the general theory of elasticity by Pochhammer [1] in 1876 and independently by 
Chree [2] in 1889; however, due to complexity of these equations, they could not 
present numerical solutions. Later, many researchers studied Pochhammer-Chree 
frequency equations and solved them for special situations, such as very short or very 
long wavelengths [3,4,5]. Until 1940, no exact solution existed for these equations 
and the problem was only studied for simple and special cases. Love [6] and Kolsky 
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[7] were among those who first solved the frequency equations by numerical 
methods.  

To solve the frequency equations, many researchers use iterative techniques, 
such as linear or quadratic interpolation or extrapolation algorithms, which are very 
fast on a single root. However, when two roots are in close proximity, for example 
near the crossing points of longitudinal mode dispersion curves, the function changes 
sign twice and such schemes are unstable. Alternatively, the frequency equations may 
be solved by safer iteration techniques such as Newton-Raphson, bisection, and 
Mueller. However, because of the high variety and number of operations, these 
methods are difficult, very slow, and time consuming. 

In this paper, an alternative method is proposed that is more stable, very fast, 
with low possibility of numerical error. It produces a convenient graphical illustration 
of the frequency equation which has no counterpart in traditional methods. 

PROPAGATION OF LONGITUDINAL WAVES IN A CIRCULAR 
CYLINDER  

To demonstrate the advantages of the proposed method, the problems of longitudinal 
wave propagation in isotropic and transversely isotropic cylinders are solved 
numerically and the three-dimensional representation of the frequency equations as 
well as the corresponding dispersion curves are plotted.  

To demonstrate the capability of the proposed numerical method in solving 
frequency equations, the problem of longitudinal guided wave propagation in 
isotropic and transversely isotropic circular cylinders is considered in this section. 
The method can be easily applied to other problems such as propagation of waves in 
isotropic and anisotropic plates and shells. 

A cylindrical coordinate system, ),,( zr θ , is chosen with the z direction 
coincident with the axis of the cylinder. 
The displacement vector is written in terms of three scalar potential functions as 
follows [8]: 
 

)ˆ()ˆ( zz eaeU ψχφ ×∇×∇+×∇+∇=                                                                          (1) 
 

The scalar potentials for the cylinder are of the form: 
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where pck /ω=   is the wave number, pc is the phase velocity, ω  is the circular 

frequency and nJ  are first type Bessel functions of order n. Moreover, 1s , 2s , 3s , 1q  
and 2q  are constants which depend on the elastic constants of the material as well as 
the frequency and wave number.  

For axisymmetric problems, i.e. longitudinal waves traveling along the cylinder 
axis, the displacement field is independent of θ  and of the form (ur, 0, uz). This 
mode of wave propagation corresponds to n=0 in Eqs. (2)-(4) and results in 

0=χ [10]. 
For a cylinder in vacuum, the traction-free boundary conditions hold. Therefore, 

at r=a, 
 

,0== rzrr σσ                                                                                                              (5) 
 

Substitution of equations of stress, expressed in terms of potential functions, in 
Eq. (5) gives [9], 
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The frequency equation, which is also called the dispersion equation, shows the 
relationship between the frequencies and phase velocities of various modes of 
longitudinal guided waves in the cylinder; for this problem, it can be expressed as [9], 
 

0]adet[ ij = ,                                                                                                                 (7) 

NOVEL NUMERICAL METHOD 

In this section, the new approach for solving the frequency equation is described. In 
this approach there is no need to search for the zeros of the secular determinant of Eq. 
(7) in order to plot the dispersion curves. The LHS of Eq. (7) which is in terms of two 
variables, f  and pc is calculated for the desired range of frequencies and phase 
velocities. A three-dimensional plot of the real part (arbitrary units) of the frequency 
equation ( )][det( ijareal ) versus dimensionless frequency fd  and dimensionless 
velocity bp cc /  is produced, where bc  is the bar velocity. A two-dimensional cross 
section of this three-dimensional plot in bp ccfd /−  plane provides the desired 
dispersion curves. Despite the simplicity of this method, it is very fast and accurate. 
In fact, the cumbersome approach of checking individual points one by one is now 
replaces by looking at the big picture of the solution. By avoiding the one-by-one 
examination of the points, the calculations are done more quickly, and the whole 
procedure is less prone to numerical errors.   
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To show the advantages of the proposed new technique, we use it for plotting 
the dispersion curves of a number of components. Figure (1) shows the three-
dimensional frequency equation plot of longitudinal modes of an aluminum cylinder.  
 
 

 

Figure 1- Three-dimensional plot of the frequency equation for an isotropic aluminum cylinder, 
 

 

Figure 2- Two-dimensional plot of the frequency equation for an isotropic aluminum cylinder, 

The elastic constants of materials were taken from Table Ι  of Ref. 9. Figure (2) is the 
two-dimensional cross-section of Fig (1) in bp ccfd /−  plane. The upper and lower 
limits of )][det( ijareal  are truncated at ± 1000 to enhance the graphical 
representation of the results. Figures (3) and (4) show the frequency equation and 
dispersion curves for a transversely isotropic CFAMC composite cylinder; 
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Figure 3- Three-dimensional plot of the frequency equation for a transversely isotropic CFAMC 
cylinder, 

 
 

 
 

Figure 4- Two-dimensional plot of the frequency equation for a transversely isotropic CFAMC 
cylinder, 

 
In the examples presented in this section, the procedure was very fast. Figures 2 

and 4 were plotted in 4.26 and 2.98 seconds, respectively. The corresponding 
computation times for plotting Figs. 2 and 4 by iterative techniques were 106.65 and 
78.52 seconds. This is significantly faster than calculating and plotting the dispersion 
curves by traditional iterative techniques. The calculations were performed on a 
personal computer having a 1.7 GHz Pentium 4 processor with 128 mega bytes of 
RAM. 
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Table 1, Physical parameters. 
)(N/m10Stiffness 211×  Density 

)(kg/m3  
44c  33c  13c  12c  11c  

Material 

2690 0.249 1.108 0.612 0.612 1.108 Aluminum 
3220 0.50 3.09 0.  95  0.  84  1.79 CFAMC 

 
 

CONCLUSIONS 
An alternative numerical approach for plotting dispersion curves was presented in this 
paper. In this method, instead of using repetitive algorithms, a three-dimensional 
illustration of the frequency equation is used for obtaining the dispersion curves. To 
show the validity of the proposed approach, it was shown that the results obtained by 
this method are in full conformity with the results determined by other methods for 
the isotropic and transversely isotropic circular cylinders. The proposed method can 
be applied to other problems including wave propagation in isotropic and anisotropic 
plates and shells. It is very fast, simple, and robust (low possibility of numerical 
error), and gives a clear picture of the nature of the frequency equation. 
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