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Abstract  
This paper presents a theoretical approach for analyzing the behavior of acoustical waves due 
to a pulsating sphere with a time- varying radius. Because of the interdependence of the space 
and time coordinates, the classic analytical methods cannot be applied for solving the 
governing equation of the system. The problem is solved using an analytical method 
developed in previous papers. The exact solution is then determined and the analysis of the 
acoustic behavior shows that all the physical properties of the system are dynamic. 

INTRODUCTION 

Acoustic waves propagate in a variety of media. The presence of various 
acoustic waves in the surrounding media produces a continuum of interactive acoustic 
events which occur throughout the universe at various scales. 

The physical dimensions of an acoustic source represent an important parameter 
which determines the vibrating properties of the corresponding acoustic waves. 
Normally, an acoustic waves source vibrates at a frequency which is related to the 
length or diameter of the source, and, of course, depends upon of other parameters.     

The propagation of acoustic waves generated by a pulsating sphere was 
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investigated for application in many areas [1-6]: Medicine, Aerospace, Geophysics, 
etc. The problem of the classical case is well-known that is when the radius of the 
sphere is a constant. However, if the radius of the sphere is a function of time, the 
situation becomes very difficult for determining the solution of the problem. In the 
most cases, the attempts for solving this question have utilized different numerical 
techniques or general mathematical methods which provide complex solutions. For 
this reason, we propose an analytical solution for acoustic waves generated by a 
pulsating sphere with a varying- time radius. The solution is deduced from an 
analytical method previously published [7, 8]. The solution is obtained in closed form 
and then makes easy the understanding of the physical phenomenon.     

 

 
2. POSITION OF THE PROBLEM 

 
For a spherically symmetric acoustic wave in terms of pressure p the 

governing equation is reduced to the following wave equation:   
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with U(τ, r) = r.P(τ, r) and τ = ct, where c, t, r are respectively the wave velocity, time 
and the sphere radius.  
If the radius becomes a function of time r = a(τ) with a(0) = a0, then the solution of  
Eq.(2.1) is not obvious. Indeed, because of interdependence of space and time 
coordinates, the method of separation of variables cannot be applied. Thus, the 
problem amounts to solve Eq. (2.1) in the following time-varying domain  
 

0〉τ ;  ( )τar ≤≤0                          (2.2)   
 
The initial and boundary conditions are not needed; they vary with the respective 
applications and are specified there. 

 
 

3. SOLUTION OF THE PROBLEM 
 
The principle of the method consists in transforming the variable domain 

( ( )τar ≤≤0 ) into a fixed band ( 0 0≤ ≤η η ) by using a conformal mapping given by 
the following analytical function  
 

( ) ( ) ( ηξηξ )~,~~,~ gifWF += .                      (3.1) 
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By imposing a condition upon F, new real transformations are determined which 
leave the wave equation invariant in the fixed domain where the solution is possible. 
The solution in the initial domain is obtained by the inverse function transformations. 

Our approach uses the analogy between Laplace’s equation and the wave 
equation. Indeed, the change irr =~  ( i 2 1= − ) transforms Eq. (2.1) into the following 
elliptic equation: 
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It is well known that solutions of Laplace's equation remain solutions of Laplace's 
equation when subjected to a conformal transformation. More precisely, if  
 

( ) ( ) (Z F W f ig= = + )~ ,~ ~ ,~ξ η ξ η                (3.3) 
 where F is an analytical function of the complex variable W i= +ξ η~   with 

riZ ~+=τ , then the change of variables 
 

(τ ξ= )η~ ,~f  ;   ( )ηξ ~,~~ gr = ,                      (3.4) 
 
transforms (3.2) into the following form: 
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Next, we impose the following condition upon F: 
 

( ) ( )F W F W* *= ,                    (3.6) 
 
where asterisk sign means the complex conjugate. The functions ( )~ ,~f ξ η  and ( )~ ,~g ξ η  
are respectively even and odd with respect to the variable ~η . By Mac-Laurin 
expansion we deduce  
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where f and g are real functions of the real variables ξ  andη . Letting ~η η= i  in (3.4) 
and using (3.7) and (3.8) we find the original variables τ and x  
 

( )τ ξ= f ,η ;   ( )ηξ ,gr =                     (3.9) 
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From the relations (3.4) which satisfy the Cauchy-Riemann’s conditions, we can 
show that the relations (3.9) satisfy the following fundamental conditions:  
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which are unlike Cauchy-Riemann relations, but, play the same role as the Cauchy-
Riemann relations in the transformation theory of Laplace’s equation. 
 In   addition to the relations (3.10), the transformation functions themselves satisfy 
wave equation. Indeed, by using the inversion theorem in derivation of (3.10), we 
obtain: 
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These least relations represent wave equations. According to the above results and 
with the new variablesξ  andη , Eq. (3.5) takes the following form: 
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The right choice of F, produces a conformal mapping of the time-varying domain 

( )τar ≤≤0  to a band 0 0≤ ≤η η . In this case, the moving boundary is transformed to 
a fixed boundary. 
The solution for  in the fixed domain is well known and can be expressed in 
terms of complexes Fourier series. 

(U ξ η, )
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In order to find the solution with the original variables τ and r, we consider the 
inverse function ψ of F such that ψ = F-1. Then,  
 

( ) ( ) WWFFZ == −1ψ                     (3.14) 
 
ψ satisfies also the condition 
 

( ) ( )∗∗ = ZZ ψψ                     (3.15) 
 
then, we obtain the relations between the new and original variables.  
 

( )r+=+ τψηξ ;                             (3.16) 
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  ( r)−=− τψηξ                         (3.17) 
 
thus,  
 

( )( )ξ η ψ τ τ+ = +0 a                           (3.18) 

                    (3.19) ( )( )ξ η ψ τ τ− = −0 a
 
and the width η 0 of the band can be expressed by: 
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Finally, the exact solution with the original variables is given of the form:  
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Since U(τ, r) = r.P(τ, r), then , we deduce the exact expression of the pressure 
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 RESULTS AND DISCUSSION 
 

In this work, an exact solution for acoustic waves generated by a sphere with 
time-varying radius has been presented. As indicated in (3.22), the solution is of the 
same form of the classical case (r constant). However, it expresses in terms of 
functional Fourier’s series. 

We note that if the radius is assumed to be constant ( r = a(τ) = a0 ), the relation 
(3.22) leads to the well-known classical solution. Indeed, in this case, the function F 
and its inverse ψ become identity. Thus, this result supports the applicability of the 
solution (3.22).  

Relation (3.22) represents the general solution of the problem. The first term 
represents a divergent wave propagating in all direction from the origin. The second 
term represents a convergent wave which approaches to the origin.  

For an actual case, we have to know the initial and boundary conditions and 
also the function ψ. We must point out that anyone of the eigenfunctions of the static 
sphere (r constant) can be chosen as initial conditions and for any moving law of the 
radius there is a specific function ψ.  

In spite of its general expression, (3.22) shows a modal nature of the pressure. It   
shows also that every mode is dynamic because of η0 which depends on time 
according to (3.20). This means that the frequency is instantaneous. We remark also 
that the amplitude of the pressure decreases when the radius increases as in classical 
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case. However, we expect that the amplitude is also instantaneous. Therefore, we 
expect the existence of a generalized double Doppler’s shift. 

The determination of the pressure under this closed form makes easy the 
understanding physical phenomenon and the computational of different physical 
entities such energy etc. In the future, other works should examine actual cases of 
radius motion.    
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 6



ICSV13, July 2-6, 2006, Vienna, Austria 

REFERENCES 

[1] Y. Sato and T. Usami, “ Basic study on the oscillation of a homogeneous elastic sphere’’, 
I. Frequncy of the free oscillations, Geophy Marg. 31, 15 (1962).  
[2] “Annals of the New York Academy of Science’’, 974: 328-347 (2002). 
[3] R. H. Vogt and W. G. Neubower, “ Relationship between acoustic reflection and 
vibrational modes of elastic sphere’’, J. Acout. Soc. Am, 60, 1522 (1976). 
[4] J. R. Blake, B. Taib and G. Doherty, “ Transient cavities near boundaries. Part 1. 
rigid boundary ‘’ J. Fluid Mech, vol. 170, pp.479-497, (1986). 
[5] B. Krosovitski and E. Kimmel, “ Gas bubble pulsation in semi-confined space 
subjected to ultrasound’’, J. Acoust. Soc. Amer., vol. 109, pp. 891-898, (2000). 
[6] S. Zang, J.H. Ducan and G.L. Chahine, “ The final stage of the collapse of a 
cavitation bubble near rigid wall’’, J. Fluid Mech., vol. 257, pp. 147-181, (1993). 
[7] L. Gaffour, “ Analytical method for solving the 1-D wave equation with moving 
boundary’’ Progress in electromagnetic waves and applications PIER 20, pp.      (1998). 
[8] L. Gaffour, Analytical solution of the dispersive wave equation with moving boundary’’, 
Proc., N° 209, ICSV10, Stockholm,  July 10-14, (2003). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 7


