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Abstract 
The aim of this paper is to identify the nominal model and associated uncertainty bound of a 
lightly damped flexible beam in order to be utilized in robust controller design methods. Our 
approach is based on Set Membership theory where the system’s uncertainties assumed to be 
unknown but bounded (UBB). Both parametric and non-parametric uncertainties have been 
accounted in the robust identification problem. The problem has been solved using 
Ellipsoidal and Parallelotopic approximation methods.  

INTRODUCTION 

Robust control theory plays an important role in the application of control theory in 
practical problems. The main concept is to consider a physical system as an uncertain 
model which may be represented as a family of mathematical models. Using robust 
control techniques, all models in this family will be stabilized in an appropriate 
manner. This family is described by a nominal model and a bounded uncertainty. 
Thus it is customary to identify not only a nominal model, but also an uncertainty 
bound associated to this nominal model. Identification methods producing a nominal 
model and its associated uncertainty are known as “Robust Identification” or 
“ (Robust) Control-Oriented Identification” methods. Because of the outspread use of 
robust control techniques in practical problems, robust identification is an area which 
has received a growing interest of researchers since beginning of 1990’s due to the 
weakness of classical identification methods to produce suitable models for robust 
control theory. Robust identification algorithms use a priori information on system 
and its input-output data (posteriori information) to produce a nominal model and its 
associated uncertainty.  
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Two main philosophies for description of model’s uncertainties have been used. The 
first one is based on statistical assumptions and produces so-called “soft bound” on 
model’s uncertainty. Second approach is based on deterministic hypothesizes and 
gives “hard bound” on uncertainty. Indeed in this approach, uncertainties are assumed 
to be “Unknown but Bounded” (UBB) [1].  Deterministic hypothesis on model’s 
uncertainties, leads to set membership identification methodologies.  
In all system identification problems, perturbation are potentially arise form two main 
sources: a variance error due to the measurement noises and a bias term due to effect 
of unmodeled dynamics (dynamics that have not been included by nominal estimated 
model- also known as model error). The nature of these two error types is quite 
different. Variance error generally uncorrelated with the input signal (in open loop 
data collection case), but bias error is strongly depends on nominal model’s structure 
and identification experiment input signal [1]. 
Three main approaches for robust identification have been addressed in the literature, 
namely: 

1. Stochastic Embedding (SE) 
2. Model Error Modeling (MEM) 
3. Set Membership (SM) 

Set Membership technique is a time/frequency domain method, based on 
deterministic assumptions on system’s perturbations. In fact uncertainties deem to be 
unknown but bounded by a suitable norm. In the first works the idea is used for state 
estimation [3, 4].   Later, SM theory is employed for the aim of system identification 
[5, 6]. Because of its deterministic framework, this approach to robust identification 
is more popular than SE and other statistical based approaches. Both parametric and 
non-parametric uncertainties can be accounted in SM identification problem. In [5], 
[6], [7] and [8] just parametric uncertainties are considered while [1], [9], [10], [11], 
[12] and [13] deal with both parametric and non-parametric uncertainties. 
In this paper the SM approach has been employed in order to robust identification of 
a lightly damped flexible beam. Fundamentally, lightly damped flexible structures are 
distributed parameter systems and thus have infinite dimensional analytic models. In 
order to design a controller one has to have a finite dimensional model. Using 
truncated or reduced order model, “spill over effect” is a possible phenomenon. Spill 
over effect is called to the degradation of controller’s performance due to excitation 
of unmodeled dynamics [14]. To fulfill this problem, robust controller is a beneficial 
tool. So, robust identification of lightly damped flexible structures is an evident 
necessity. 
The remainder of this paper is organized as follow: in the next section the SM robust 
identification problem and its solutions will be briefly introduced. Then this approach 
will be employed in order to identification of the nominal model and uncertainty 
bound of a lightly damped flexible beam. The last section concludes the paper.  
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SET MEMBERSHIP ROBUST IDENTIFICATION PROBLEM 
FORMULATION 

Suppose that N samples of input-output data, which have been generated by real 
system G(q), are available: 
 
 )()()()( kvkuqGky mm +=  (1) 
 
where v(k) is the measurement noise and is bounded by a suitable norm: 
 
 )()( kkv δ

β
≤  (2) 

 
It is possible to represent the real system as follow: 
 
 )(),()( qGqGqG ∆+= θ  (3) 
 
where ),( θqG  is the parameterized nominal model and )(qG∆  stands for possible 
unmodeled dynamics and is also bounded by suitable norm in the space of transfer 
functions. For our identification problem we choose ∞-norm. Regarding (3), the 
input-output relationship (1) can be presented as: 
 
 )()(),()()()( kvkuqGkuqGky mmm ++∆= θ  (4) 
 
Considering L∞ and H∞ norms for noise and unmodeled dynamics: 
 
 )()()()(),()( kvkuqGkuqGky mmm +∆=− θ  (5) 
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where 

∞
∆ )(qG and 

∞
)(kv are nonparametric and parametric perturbation bounds 

respectively and come from a priori information on system to be identified. Let: 
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Our approach in determining the nonparametric uncertainty bound (γ ) is similar to 
what have been addressed in [2], [10] and [11]. 
Now (7) can be expressed as: 
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It is customary to use a constant upper bound instead of variable bound in (8). In 
order to do this, one can choose the maximum value of the variable perturbation 
bound over all N samples and consider it in (8) for all data samples. Although 
considering constant upper bound on system’s perturbations increases the 
conservativeness of identification algorithm, but it reduces the computational 
complexity of the algorithm.  
In order to complete the set membership inequality in (8), the structure of ),( θqG  
must be chosen. This model structure must have some general characteristics such as: 
low dimensional and linear in parameter. Considering this, the output-error (OE) and 
ARX structures may be used in the identification problem. Among them, OE structure 
is a popular model structure. To avoid high computational complexity due to 
nonlinear optimization in the process of parameter estimation and to obtain linear in 
model structure, we use the linear combination of orthonormal basis functions for OE 
model structure. This choice has an another advantage in the way that much more a 
priori information can be imported in to the identification algorithm by proper choice 
of basis functions. In other words by selecting basis functions whose dynamics are 
close to the dynamics of the real system, it will be conceivable to estimate the 
nominal model by minimum number of parameters [15, 16]. Because of resonant 
nature of our system, we use so-called “Kautz”  or two-parameter basis functions 
[17]: 
 

 ∑
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where n is the order of nominal model and )(qiψ  is Kautz basis function. Now by (8) 
and (9):  
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Or equivalently: 
 
 km

T
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where T

n ]...[ 21 θθθθ =  is the vector of parameters and ),( kqmx  is the 
regression(information) vector and computed as: 
 
 T

mnmmm kuqkuqkuqkq )]()(...)()()()([),( 21 ψψψ=x  (13) 
 
For each time stamp (k=1, 2,…, N), (12) produces a so-called “strip” in the space of 
parameters. By intersecting these strips, “Feasible Parameter Set” (FPS) will be 
obtained as follow: 
 

 
N
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In fact, Θ  is the set of all parameters compatible with input-output data, a priori 
information on system and the uncertainty bounds. For the case that inequalities are 
linear in parameters, as (14), the FPS is a convex polytope in the space of nominal 
model’s parameters. The aim of set membership robust identification problem is to 
compute the FPS and determine an optimal point in FPS (in some sense) as the 
nominal model’s parameters. Exact computation of FPS and nominal model’s 
parameters is a laborious task and requires high amount of numerical computations 
and is not conceivable in practical situations [18, 19, 20]. An alternative is to 
outbound the FPS by simple geometrical shapes like “Ellipsoid” and “Parallelotope” 
(fig.1 ) and consider their center as the parameters of nominal model [5, 6, 7, 11]. 
Because of the greater DOF of the parallelotopes, they can outbound the FPS tighter 
than ellipsoids. Although this can be observed explicitly in fig.1 but it will be verified 
with respect to identification results in the next section. 

 

 

Figure 1 – Ellipsoidal and Parallelotopic estimation of FPS  

SIMULATION RESULTS 

This section presents the robust identification results of a lightly damped flexible 
beam with simply-supported boundary condition (fig. 2). 

FPS 

Ellipsoid Outbounding 
Estimate 

 Parallelotope Outbounding 
Estimate 
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Figure 2 – The under study simply-supported beam  

 
The flexible beam which is considered in this work is assumed to be out of steal 
which its exact specifications are presented in table1. The identification experiment 
has been simulated using a “Finite Element” model of the beam.  
 

Table 1. The under study beam properties 

Length 500 mm 
Width 20 mm 

Thickness 1 mm 
 Modulus of Young 2.07e+11 

Density 7800 Kg/m3 
Damping 5e-3 

 
 
The input and output time domain signals for identification are force and 
displacement, respectively (fig. 3). The input signal is the combination of 260 
sinusoidal with proper frequencies that have been picked according to the a priori 
information of system which in this case is the beam’s FRF (fig. 4).  Distribution of 
these frequencies is a key point in the experiment design. The output signal has been 
corrupted by a normally distributed Gaussian random signal with the SNR of 1% in 
order to simulate the measurement noise. 
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Figure 3 – Input-Output identification data         Figure 4 – FRF of the beam under study  

 
The aim of identification problem is to consider the first two modes in the nominal 
model and the third mode as unmodeled dynamic or non-parametric uncertainty. We 
use Kautz basis functions for this purpose, which their parameters (b, c) have been 

Sensor 

Actuator Beam 
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tuned with respect to the system’s FRF. We also use two different ountboinding 
algorithms for approximation of FPS: the ellipsoidal and the parallelotopic, which are 
shown in fig. 5 and fig. 6, respectively. In comparison with fig. 5, it can be seen that 
the tightness of parallelotopic approximation is better. As it is stated earlier, this is 
because of greater DOF of the parallelotopes. So they can enclose FPS better than 
ellipsoids. 
From the robust controller design view, the parallelotopic approximated model has 
the advantage over the ellipsoidal approximated model in the way that it can achieve 
a suitable compromise between a good performance (which is depends on the 
tightness of uncertainty bound) and an appropriate stability (which is depends on the 
coverage of the real system with the uncertainty bound).   
 

 
  

 

CONCLUSION 

In order to design robust controllers one has to have a suitable model which consists 
of the nominal model and some measure of its uncertainties. Robust identification 
methods provide such models that are indicate the real uncertainties of the system. 
SM method is one of these techniques that is based on deterministic assumptions on 
uncertainties. This type of uncertainty representation is greatly adopted by various 
robust control methods. In this paper this method is used for the purpose of robust 
identification of lightly damped flexible beams. It is shown that using the 
parallellotopic approximation method has better quality over the ellipsoidal method in 
the way that it can guaranty performance and stability of the designed controller.  
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