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Abstract

In this paper, we expand the previous Independent Component Analysis (ICA) method to the case when

3 source signals are mixed with time-delay or convolution. More concretely, a practical scheme for 3-

dimensional (3D) blind separation is formulated based on the cost function in terms of the complex

Hermite moment, combined with the use of the group properties of 3-D unitary group SU(3). To

confirm the validity and the effectiveness of our method, it is applied to speech data, introducing

Principal Component Analysis as a preprocessing method.

1 Introduction

There have been many works[1, 2, 3, 4], related to the Blind Source Separation (BSS) which separates

the observations into the original signals. This is because the BSS itself is a very attractive problem

and has a wide potential in applications. In particular, a solution based on the statistical independency

between the original signals is very popular and is called Independent Component Analysis (ICA)[5].

Authors have also proposed a scheme[6, 7, 8] for separating blindly N -dimensional signals

based on the cost function in terms of the cumulants or the Hermite moments of low orders n =

3, 4, 5, 6, combined with the use of the group properties of N -D rotational group SO(N). The optimal

rotation that transformsN -D standardized mixed signals into a possible ofN independent components

is searched for by the gradient method.

When the signals are observed with time-delayed or convoluted mixture, it is convenient to

treat the BSS problem in frequency region. We developed Independent Component Analysis (ICA) for

narrowband complex signals with time-delayed or convoluted mixture by means of complex Hermite

moments and unitary transformations (SU(2)) for 2-dimensional (2D) case[9].

In this paper, we expand the previous method to the case when 3 source signals are mixed with

time-delay or convolution. More concretely, a practical scheme for 3-dimensional (3D) blind separa-

tion is formulated based on the cost function in terms of the complex Hermite moment, combined with
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the use of the group properties of 3-D unitary group SU(3). The cost function is defined as a square

norm of the complex Hermite moments with respect to separated signals and the optimal solution is

found by maximizing the cost function. The optimal unitary matrix that transforms 3-D standardized

mixed signals into a possible of 3 independent components is searched for by the gradient method,

introducing parameterized matrices for SU(3). To confirm the validity and the effectiveness of our

method, it is applied to speech data, introducing Principal Component Analysis as a preprocessing

method.

2 THEORETICAL CONSIDERATION

2.1 Independent Components and Observation Process

Let us consider the actual situation where 3 original signals si(t)(i = 1, 2, 3) affected by the trans-

mission paths are observed. Letting S(t) = (s1(t), s2(t), s3(t))
T be source signal vector, and the

observation vector X(t) = (x1(t), x2(t), x3(t))
T is given as:

X(t) = A(z)S(t) with A(z) =




a11(z) a12(z) a13(z)

a21(z) a22(z) a23(z)

a31(z) a32(z) a33(z)



 (1)

where A(z) denotes the transfer matrix. The mixture X will be blindly separated into the independent

components, utilizing the statistical independency between the source signals si(t) and sj(t) (i, j =

1, 2, 3; i 6= j).

Figure 1 a flow diagram of the blind source separation for complex signals. The complex filter

first makes real observations narrow-banded into Xν , where ν denotes the ν-th center frequency. Then,

the narrow-banded complex observations are ortho-normalized with use of the eigenvalue matrix σ of

observations and corresponding eigenvector U. Finally, they are transformed by a unitary matrix U(g).

(i)Mixed observations(Real signals) X(t)

(iv)Separated signals Y = U(g)Zν = U(g)σ−1
U

∗
Xν

(v)Complex Hermite moment 〈H22(Yi, Yi)〉

(vi)Cost functionQ22 =

3∑

i=1

〈H22(Yi, Yi)〉2 → max

(ii)Narrow-banded complex signals Xν(t)

(iii)Standardization Zν = σ−1
U

∗
Xν

Figure 1: A flow of blind source separation for convolved signals.

2.2 Complex Signal and Complex Hermite Polynomial

2.2.1 Complex signal
In this paper a complex signal is meant to be a complex-valued random signal with an isotropic prob-

ability distribution. A normalized complex signal Z (mean 0 and variance 1) is a complex random

variable with its 2nd-order statistical property,

z = x+ iy, z = x− iy, (2)

〈x2〉 = 〈y2〉 =
1

2
, 〈xy〉 = 0, 〈zz〉 ≡ 〈|z|2〉 = 1, 〈z2〉 = 〈z2〉 = 0 (3)

with 〈 〉 denoting the ensemble average. The probability density p(x, y) of (X,Y ) is isotropic;

PXY (x, y)dxdy ≡ PR(r)dr(1/2π)dθ (4)
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where pR(r) denotes the probability density forR =
√
X2 + Y 2. The random variables (X,Y ), which

are orthogonal but not necessarily independent of each other, can not be transformed to independent

pair by rotation unless they are Gaussian. The moments of the complex signalsZ,Z satisfy the relation

〈Zm
Zn〉 = 〈Rn+mei(n−m)Θ〉 = δmn〈R2m〉, 〈R2m〉 =

∫
∞

0

r2mpR(r)dr (= 1, m = 1) (5)

2.2.2 Unitary transformation group SU(N)

Let a unitary matrix with determinant 1 be

UU
∗ = U

∗
U = I, |U| = 1 (6)

The totality SU(N) of such transformations forms a group, which we denote by G for short. Let g ∈
G be an element of G, and let the matrices corresponding to g, e (e:identity) be denoted by U =

U(g),U(e) = I. We note the following correspondence for the multiplication and the inversion,

g1g2 → U(g1)U(g2), g
−1 → U

−1(g) = U
∗(g).

2.2.3 Parametrization of SU(2)

We represent the matrix U(g) in terms of the three parameters (α, β, γ), which correspond to the

Euler angles of 3D rotation [10]. Hence, we also represent the matrix and g by U(g) = U(α, β, γ)

g = (α, β, γ).

U(α, β, γ) =

(
cos β

2 ei
γ+α

2 i sin β
2 ei

γ−α

2

i sin β
2 ei

α−γ

2 cos β
2 e−i

γ+α

2

)
(7)

=

(
ei

γ

2 0

0 e−i
γ

2

)(
cos β

2 i sin β
2

i sin β
2 cos β

2

)(
ei α

2 0

0 e−i α
2

)
(8)

≡ A(γ)B(β)A(α) 0 ≤ α < 2π, 0 ≤ β < π, 0 ≤ γ < 2π (9)

A unitary matrix can be factorized as in Eq.(9), where A(α),A(γ) are diagonal with unity moduli, so

that the absolute values of the entries |uνµ(g)| depends only on β. Since γ may take arbitrary values,

we can set γ to be 0.

2.2.4 Unitary transformation of 2D complex signals

By a unitary matrix U(g), g ∈ SU(2), the ortho-normalized complex vector Z = (z1, z2)
T is trans-

formed as

Y(g) = U(g)Z (10)

where Y(g) designates explicitly that it is a function of g. A unitary transformation conserves the

vector norm as well as the correlation matrix of Y(g):

〈YY
∗〉 = 〈U(g)Z(U(g)Z)∗〉 = U(g)〈ZZ

∗〉U(g)∗ = I (11)

A complex conjugate variable Z
∗ = (z1, z2)

T is subject to the transformation by complex conjugate

unitary matrix as a contravariant spinor.

2.2.5 Parametrization of SU(3)

As for 3D unitary transformation group SU(3), we represent the matrix U(g) in terms of three kinds

of Eq.(9). Thus, the 3D unitary matrix for the ortho-normalized complex vector Z = (z1, z2, z3)
T can

be parameterized as follows:
U(g) = Uzx(g3)Uyz(g2)Uxy(g1) (12)

Here, the suffix i and j of Uij denote ij coordinates respectively, i.e., (i, j = x, y, z, i 6= j), and

gi = (αi, βi, γi).
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Equation (12) can be also expressed in another form as:

U(g) = Uxy(g3)Uyz(g2)Uxy(g1) (13)

The matrix in Eq.(13) can be represented by angle parameters as follows:

U(g) =




ei

γ3
2 0 0

0 e−i
γ3
2 0

0 0 1








cos β3

2 i sin β3

2 0

i sin β3

2 cos β3

2 0

0 0 1








ei

α3
2 0 0

0 e−i
α3
2 0

0 0 1





·




1 0 0

0 ei
γ2
2 0

0 0 e−i
γ2
2








1 0 0

0 cos β2

2 i sin β2

2

0 i sin β2

2 cos β2

2








1 0 0

0 ei
α2
2 0

0 0 e−i
α2
2





·




ei

γ1
2 0 0

0 e−i
γ1
2 0

0 0 1








cos β1

2 i sin β1

2 0

i sin β1

2 cos β1

2 0

0 0 1








ei

α1
2 0 0

0 e−i
α1
2 0

0 0 1



 (14)

Similarly to 2D case, we can set γ3 to be 0, because γ may take arbitrary values.

U(g) = Uxy(α3, β3, 0)Uyz(α2, β2, γ2)Uxy(α1, β1, γ1) (15)

2.3 ICA for Observed Complex-valued Signals

The unitary matrix transforms the complex-valued signals keeping the non-correlation among them.

For the purpose of searching for the optimal angles which make the complex-valued signals indepen-

dent of each other, the evaluation function based on the complex Hermite moment is introduced.

2.3.1 Complex Hermite polynomials

As a bi-variate polynomial of z = x + iy, z = x − iy, a complex Hermite polynomial Hmn(z, z) is

defined by the formula [11, 12],

Hmn(z, z) = G(z, 0, 1)−1

(
− ∂

∂z

)m(
− ∂

∂z

)n

G(z, 0, 1) (16)

whereG(z; 1) denotes the complex Gaussian probability density with variance 1. A general expression

of complex Hermite polynomial is given by

Hmn(z, z) =

min(m,n)∑

j=0

(−1)j m!n!

j!(m− j)!(n− j)!
zm−jzn−j m,n = 0, 1, 2, · · · (17)

In what follows we mainly deal with Hnn(z, z);

H00(z, z) = 1 (18)

H11(z, z) = |z|2 − 1 (19)

H22(z, z) = |z|4 − 4|z|2 + 2 (20)

H33(z, z) = |z|6 − 9|z|4 + 18|z|2 − 6 (21)

H44(z, z) = |z|8 − 16|z|6 + 72|z|4 − 96|z|2 + 24 (22)

The orthogonality of the complex Hermite polynomial is written as follows,∫
∞

−∞

G(z; 1)Hmn(z, z)Hm′n′(z, z)dz = δmm′δnn′m!n! (23)
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2.3.2 3D complex Hermite polynomial and tensorial transformation

Generally, a multivariate complex Hermite polynomial is transformed as a mixed tensor of order

(m,n) [12]. We write down the transformation rule for bi-variate complex Hermite polynomial

Hmn(zν , zν),(N = 3, ν = 1, 2, 3). For a 3D unitary transformation, SU(3),




y1 = u11z1 + u12z2 + u13z3
y2 = u21z1 + u22z2 + u23z3
y3 = u31z1 + u32z2 + u33z3

(24)

we have the formula

Hmn(yν , yν) =
∑

m1+m2+m3=m,

∑

n1+n2+n3=n

m!

m1!m2!m3!

n!

n1!n2!n3!

· um1

ν1 u
m2

ν2 u
m3

ν3 u
n1

ν1u
n2

ν2u
n3

ν3Hm1n1
(z1, z1)Hm2n2

(z2, z2)Hm3n3
(z3, z3) (25)

We mainly deal with Hnn(zν , zν), (n = 1, 2, 3, · · · ) in what follows. We show here the formula only

for n = 2:

H22(yν , yν) = |uν1|4(|zν |4 − 4|zν |2 + 2) + |uν2|4(|zν |4 − 4|zν |2 + 2)

+ |uν3|4(|zν |4 − 4|zν |2 + 2) + u2
ν1u

2
ν2z

2
1z

2
2 + u2

ν1u
2
ν2z

2
1z

2
2

+ u2
ν1u

2
ν3z

2
1z

2
3 + u2

ν1u
2
ν3z

2
1z

2
3 + u2

ν2u
2
ν3z

2
2z

2
3 + u2

ν2u
2
ν3z

2
2z

2
3

+ 2u2
ν1uν2uν3z

2
1z2z3 + 2u2

ν1uν2uν3z
2
1z2z3

+ 2uν1u
2
ν2uν3z1z

2
2z3 + 2uν1u

2
ν2uν3z1z

2
2z3

+ 2uν1uν2u
2
ν3z1z2z

2
3 + 2uν1uν2u

2
ν3z1z2z

2
3

+ 2u2
ν1uν1uν2(|z1|2 − 1)z1z2 + 2u2

ν1uν1uν2(|z1|2 − 1)z1z2

+ 2u2
ν1uν1uν3(|z1|2 − 1)z1z3 + 2u2

ν1uν1uν3(|z1|2 − 1)z1z3

+ 2u2
ν2uν2uν1(|z2|2 − 1)z2z1 + 2u2

ν2uν2uν1(|z2|2 − 1)z2z1

+ 2u2
ν2uν2uν3(|z2|2 − 1)z2z3 + 2u2

ν2uν2uν3(|z2|2 − 1)z2z3

+ 2u2
ν3uν3uν1(|z3|2 − 1)z3z1 + 2u2

ν3uν3uν1(|z3|2 − 1)z3z1

+ 2u2
ν3uν3uν2(|z3|2 − 1)z3z2 + 2u2

ν3uν3uν2(|z3|2 − 1)z3z2

+ 4|uν1|2|uν2|2(|z1|2 − 1)(|z2|2 − 1)

+ 4|uν1|2|uν3|2(|z1|2 − 1)(|z3|2 − 1)

+ 4|uν2|2|uν3|2(|z2|2 − 1)(|z3|2 − 1)

+ 4|uν1|2uν2uν3(|z1|2 − 1)z2z3 + 4|uν1|2uν2uν3(|z1|2 − 1)z2z3

+ 4|uν2|2uν3uν1(|z2|2 − 1)z3z1 + 4|uν2|2uν3uν1(|z2|2 − 1)z3z1

+ 4|uν3|2uν1uν2(|z3|2 − 1)z1z2 + 4|uν3|2uν1uν2(|z3|2 − 1)z1z2 (26)

2.3.3 Evaluation Function in Terms of Complex Hermite moment

By a unitary matrix U(g), g ∈ SU(3), Z is transformed as

Y ≡ Y(g) = U(g)Z (27)

where Y(g) designates explicitly that it is a function of g. Z denotes 3D ortho-normalized observations

and U is 3D unitary matrix. To make 3 components of Y statistically independent of each other, we

may search for the optimal rotation angles (αi, βi, γi)(i = 1, 2, 3) which are entries of SU(3).

Now, quite analogous to the cost function for the blind separation of real signals given in terms

of the vector norm of Hermite moments, we can introduce here the cost function in terms of the norm
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of complex Hermite moments:

Q(g) =
3∑

ν=1

E[H22(yν , yν)]2 → max (28)

The lefthand notation implicates that it is a function of g ∈ SU(3). This is analogous to the cost function

Q4(g) for real signal separation [7].

Thus, the evaluation function to achieve the statistical independency among 3D signals is given

as follows:

Q(g) =

3∑

ν=1

〈H22(yν , yν)〉2 =

3∑

ν=1

〈|yν |4 − 4|yν|2 + 2〉2 (29)

yν =

3∑

i=1

uνi(g)zi (ν = 1, 2, 3 g ∈ SU(3)) (30)

Maximization of the cost function with respect to g = (αi, βi, γi)(i = 1, 2, 3) can be made by

the gradient method in search for zero gradient point. There are some properties of gradient for the

absolute value in the cost function such as

∂

∂φ
|yν |2m = m|yν |2(m−1) ∂

∂φ
|yν |2, (m = 0, 1, 2, 3, · · · ) (31)

∂

∂φ
|yν |2 =

∂yν

∂φ
yν + yν

∂yν

∂φ
(32)

∂yν

∂φ
=

3∑

i=1

∂uνi(g)

∂φ
zi (g ∈ SU(3)) (33)

where φ corresponds to each angle αi, βi and γi.

Finally, the iterative algorithm of gradient method searches for the optimal angles:

φ(t + 1) = φ(t) + µ
∂

∂φ

3∑

ν=1

E[|yν(g)|4 − 4|yν(g)|2 + 2]2 (34)

with µ being a positive constantD

3 Computer simulation

The validity of the proposed method is confirmed through computer simulation.

3.1 Simulation with Random Numbers

As 3 original signals zi (i = 1, 2, 3), complex random numbers with 0 mean and unit variance are

generated using the relationship z = r cosψ + ir sinψ (data length: 80,000), where ψ denotes the

uniform random number [0, 2π) and r [0,
√

6/3) (i.e., the variance of r is 1/2). The observed signals

are mixed these original signals by the mixing matrix in Eq.(14). Here, we set all αi, βi, γi (i = 1, 2, 3)

to be 1.0 [rad].

Eq.(14) is also adopted as a unitary matrix for signal separation and each parameter is estimated

by the gradient method in Eq.(34). All of initial values are set as 0.0 and the learning rate µ = 1. Figure

2(a) shows an estimation process for 9 angle parameters. All of estimated values converge to constant

values and there is only one parameter remaining in the initial value 0, i.e., it’s γ̂3. As mentioned above,

γ̂3 of 9 parameters cannot be estimated.

To confirm this further, the random numbers are substituted in the estimated value γ̂3 every

iteration (see Fig.2(b)). The randomness of γ̂3 gives no effect on the estimated values for the other

parameters. This means that γ̂3 may take arbitrary values.
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(a) Convergence for 9 parameters.
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(b) Randomly given γ̂3

Figure 2: Estimation process by gradiend method.
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Figure 3: Original signals (top: male, mid-

dle: female, bottom: random number)
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Figure 4: Observed signals.

The separation performance is evaluated using the absolute value of each entry with respect to

the product ÛA of the separation matrix Û and the mixing matrix A, as follows:



0.999689 0.019094 0.016040

0.019113 0.999816 0.001445

0.016017 0.001679 0.999870



 (35)

Since this matrix contains only approximately 1 value at each column and each row, we find the

successful separation.

Next, for the mixed signals similar to the previous ones, the separation matrix is given in Eq.(12)

and the separation performance is as follows:



0.007924 0.005954 0.999951

0.999919 0.009931 0.007930

0.009936 0.999933 0.005946



 (36)

This means that the mixed signals can be separated even if the type of separating matrix is different

from that of mixing matrix.

3.2 Simulation with Speech Signals

To confirm the effectiveness of our method further, it is applied to the actual speech data. As shown in

Fig.3, male and female speeches (s1, s2) and random number (s3) are utilized as sound sources (length

of data: 5 sec., sampling frequency: 16kHz).

By taking the time-delay in observations into consideration, the mixing matrix is given as fol-

lows:

A(z) =




z−10 z−10 z−30

z−20 z−10 z−20

z−30 z−10 z−10



 (37)
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Figure 5: The estimation process of angle

parameters at 170[Hz].
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Figure 6: Synthesized separated signals.

where z−i denotes the i-step time delay.

The observed signals are shown in Fig.4. To make them narrow-banded, the complex filter of 1st

order with 20Hz bandwidth is introduced. The estimation process of the angle parameters are shown

in Fig.5 for the frequency band of center frequency 170Hz as an example.

In this case, the permutation problem is solved using the correlation between the envelopes of

separated signals in adjacent frequency bands. Figure6 shows the separated signals synthesized for

all frequency bands. To evaluate the separation performance numerically, the Log-Spectral Distance

(LSD) is introduced as:

LSD =

√√√√ 1

W

ωmax∑

ω=ωmin

(20 log10 |S(ω)| − 20 log10 |Ŝ(ω)|)2 [dB] with W = ωmax − ωmin, (38)

where S(ω) denotes the spectrum of source signal and Ŝ(ω) that of separated signal (see Table 1).

Table 1: Separation performance by LSD.

Observed signals [dB] Separated signals [dB]

male 24.03 13.32

female 21.95 14.81
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