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Abstract 
Regarding the prediction of structure-borne sound in large structures consisting of thick plates, 
there are some difficulties in applying the conventional SEA (statistical energy analysis) based 
on thin plate bending and in-plane waves. This paper examines the applicability of WIA (wave 
intensity analysis) to the prediction of the vibration energy level in an L-shaped structure 
assembled by thick plates. The bending wave in plates is thus expressed by Mindlin’s theory, 
taking the shear deformation and rotary inertia into consideration. The new model is introduced 
to improve the accuracy of wave transmission coefficients for line junctions between thick 
plates. As a result of comparison of the present method with FEM (finite element method), 
reasonable results are obtained for the vibration energy level in the L-shaped structure, within 
approximately 2dB up to 2kHz.  

INTRODUCTION 

SEA (statistical energy analysis) has been widely used to predict structure-borne sound 
in buildings made of concrete and brick. As the floors and walls for large structures 
such as power plants and multi-story car parks are often thicker than those of general 
buildings, acoustic designers have been faced with severe difficulty in estimating 
structure-borne sound by means of conventional SEA in which the plates are assumed 
to be thin. The thin plate is generally defined as the condition that wavelengthλ is 
large compared to the plate thickness and the validity of the thin plate theory is kh<1.2 
[1], where h is the plate thickness and k is the wave number. Conventional SEA is 
therefore applicable only to "thin" plate structures, and two specific obstacles must be 
overcome to estimate the dynamic response of "thick" plate structures. First, the modal 
density of bending waves for thick plates is much larger than that obtained from the 
thin plate theory, because the phase speed of bending waves propagating through thick 
elements is shifted from thin plate bending waves to shear waves within the frequency 
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range of interest. This means that the modal density used in SEA is different for thin 
and thick plates. Second, the mechanism of vibration energy transmission between 
thick plates is more complicated than the corresponding mechanism for thin plates. 

Several papers dealing with power transmission for general buildings have 
already been published. Buildings having three floors have been studied using SEA, 
and good agreement was generally found between the measured and predicted 
vibration levels [2]. In the high frequency range, however, the coupling loss factors 
were slightly larger than were measured due to the omission of longitudinal and shear 
waves. A general method [3] [4] for calculating the coupling loss factors at a 
rectangular slab junction was described using pure bending and in-plane waves. 
Springs are also taken into consideration at the connecting line between slabs. In the 
majority of studies of wave transmission in plate/beam structures, these coefficients [5] 
have been formulated based on the thin plate theory by means of either pure bending 
waves only or pure bending and in-plane equations. Accordingly, the coupling loss 
factors may be inaccurate either in the high frequency range or for thick plate structures. 
Only a few researchers have dealt with structure-borne sound for thick plates [6][7]. In 
another approach, FEM (finite element method) has been studied to evaluate the energy 
transmission of complicated junctions by using local finite elements with wave 
absorbing boundary conditions [8]. However, this computer-based method requires 
substantial time and cost. 

The objective of the study reported here is to develop a prediction method for 
structure-borne sound in structures assembled from thick plates. Thus, WIA (wave 
intensity analysis) [9] has been extended to consider the dynamic effects of thick plates, 
i.e., the bending waves propagating on the thick plate are expressed by Mindlin’s 
theory [10], taking the shear deformation and rotary inertia into consideration. The 
wave transmission coefficients between sub-systems used in the wave intensity 
technique are newly formulated by means of Mindlin’s bending and in-plane wave 
theory.      

The modal density of the thick plate element obtained by Mindlin’s theory is first 
compared with exact figures yielded by the three-dimensional wave theory, such that 
the applicability of Mindlin’s theory is demonstrated. In the second example for 
validating the present method, the vibration levels of an L-shaped assembly consisting 
of thick concrete plates with and without a beam at the junction are calculated and the 
results are then compared with those calculated by the conventional SEA and FEM. As 
a result of comparison of the present method with FEM, reasonable results are obtained 
for the vibration energy level in the L-shaped structure, within approximately 2dB up 
to 2kHz. This demonstrates that the wave intensity technique considering Mindlin’s 
bending and assuming a beam at the junction brings forth an improved prediction of 
structure-borne sound in structures consisting of thick plates. 

 

OUTLINE OF THEORY 
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In summary, the procedure is explained for determining the vibration energy 
transmission in an L-shaped structure by means of the wave intensity technique 
considering Midlin's wave theory instead of the conventional thin plate theory as 
follows: 
(1) The L-shaped assembly is divided into two semi-infinite plates and a beam at the 

junction shown in Fig.1. 
(2) A dynamic stiffness approach [5] is derived for each thick plate and the beam in 

order to calculate the transmission coefficients. In the dynamic stiffness matrix, the 
tractions per unit length at the edge of each plate are related to the edge 
displacements. 

(3) A global equation is assembled to apply the appropriate equilibrium and 
compatibility conditions, after which the transmission coefficients can be 
calculated. 

(4) These coefficients are used to predict the vibration energy in the wave intensity 
analysis as well as the statistical energy analysis. 
The methodology for evaluating the energy transmission is basically the same as 

that used by McCollum and Cuschieri [6], but in this study a beam is newly considered 
at the junction instead of a line coupling with two plates directly. This model 
successfully improves the accuracy of the vibration energy in the next numerical 
examples.    
 
 
 
 
 
 
 
 
 
 
 
 
 
Governing equations 
 
Mindlin’s theory [10] is deduced from the three-dimensional wave equations in order 
to consider the effects of rotary inertia and shear deformation in the same manner as for 
Timoshenko’s beam. In Mindlin’s bending, three wave equations are represented by 
the averaged deflection w and two rotations, xφ  and yφ  of plate cross sections about the 

in-plane coordinates as shown in Fig.2. Mindlin’s wave equations can be expressed in 
the form: 
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Figure 1 - Model of an L-shaped structure 
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where G' is the corrected shear modulus defined by GG 2κ=′ , G is the shear modulus, 
κ  is the shear correction factor[10],  D is the bending rigidity, ρ is the material density, 
ν  is Poisson's ratio and  h is the plate thickness. 

The in-plane displacement, u and v, of each plate are defined in the x and y 
coordinates, respectively in Fig.1. The in-plane equations [5] are described by the 
in-plane shear and the longitudinal deformations. The displacement and corresponding 
forces and moments which act at the junction edge of the plane are shown in Fig.2. The 
beam modelled at the junction between thick plates is characterized not only by the 
bending, longitudinal and torsion deformations, but also the shear deformation and 
rotary inertia.  
 
 
Dynamic stiffness matrix approach  
 
The dynamic stiffness matrix 

ℓ
K  can be derived for a single semi-infinite "thick" plate 

l on which the transmitted wave propagates from the connected edge as shown in Fig.2. 

ℓℓℓ
bKE =                                                         (5) 
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The total tractions Q which are applied to the beam by N semi-infinite plates may be 
expressed in the form  
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where 

ℓ
R  is the transfer matrix from the local coordinate of each plate to the global 

one. For the connecting beam, the dynamic stiffness matrix C may be derived in the 
same manner as for the plate. 

CaQ =                                                           (7) 
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The global equation can be derived from equations (5)-(7) in the following form: 
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The right-hand side of equation (8) is an external force by the incident wave 
propagating on the plate m towards the junction; equation (8) is then solved to yield the 
displacement 

ℓ
a of the beam. The displacement 

ℓ
b  of each plate edge is derived by the 
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relation 
ℓℓℓ

aRb T= . Finally, the transmission coefficients are calculated as the ratio of 
the power transmitted by the generated wave to the total power by the incident wave.  
 
Wave intensity analysis 
 
Wave intensity analysis [9] is based on the conventional SEA assumptions considering 
homogeneous reverberant wave fields. However, in contrast to SEA, the wave field in 
each sub-system is decomposed into wave intensity components with directional 
dependency. This allows the energy densities to be represented in the form of a Fourier 
series. For the purpose of applying the wave intensity technique to the prediction of 
dynamic response of "thick" plate structures, the modal density and the transmission 
coefficients should be introduced by assumption based on Mindlin's wave theory.  
 

NUMERICAL SIMULATIONS 

 
The calculations were carried out for two L-shaped structures made of concrete with 
Young's modulus E=2.3×1010Pa, density ρ=2,300kg/m2, Poisson ratioν=0.22, loss 
factor η=0.01 and width B=4m in Fig.1. The dimensions of the plates are shown in 
Table 1. The model of case-1 is shown in Fig.3 (a) and case-2 shown in Fig.3 (b) by 
adding the beam at the junction of case-1. The cross section of the beam is square, size 
1.0m×1.0ｍ.   
 

Table 1 Plate dimensions 
Plate L(m)    B(m) t(m) 

1 8 4 0.4 
2 5 4 0.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3 - Finite element model of an L-shaped structure 
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Finite element analysis 

The performance of the present technique is assessed by comparison with the finite 
element method in which the thick plates are divided into extremely fine meshes with 
solid elements to express an appropriate wave field in the high frequency of interest. 
The model is shown in Fig.3. The first plate is excited by point loads, which are chosen 
at random to achieve delta-correlated random loading. The time and space averaged 
vibration energy of each plate is thus obtained from the out-of-plane deformation.  
 
Modal density  
 
The modal density of out-of-plane waves for the thick plate (L=7.9m, B=4.0m, t=0.4m) 
using Mindlin’s theory is compared with that obtained by the three-dimensional wave 
theory to investigate the applicability of Mindlin’s wave. As shown in Fig.4, the 
number of modes from Mindlin’s theory corresponds to the exact results in almost all 
frequency bands. The results of the thin plate theory, however, are seen to 
underestimate the number of modes, and the discrepancy from the exact results 
increases with frequency. The total number of modes consisting of out-of and in-plane 
waves are also compared with that obtained by finite element analysis shown in Fig.5. 
It can be concluded from a modal density perspective that Mindlin’s theory is capable 
of evaluating the number of modes for thick plates up to 4kHz.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Comparison of energy level for L-shaped plates 
 
The energy levels are compared using the "thick plate" wave intensity technique with 
finite element analysis and statistical energy analysis for thick L-shaped assemblies. 
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The assumptions of simulation are shown in Table 2. The ratios of vibration energies 
are calculated between the second plate and the excited one, up to 2kHz. In 
approximate analyses such as WIA and SEA, the input power is injected into the out-of 
plane waves, namely bending waves on the first plate.  

 
Table 2 Assumption of simulation  

 
Modal 
Density 

Transmission 
coefficient 

Wave field 

Conventional SEA Thin plate theory 
Thick plate SEA 

Diffuse 

Thick plate WIA 
Mindlin’s theory Directional 

dependency 
 
The calculations have been conducted for a "thick" L-shaped structure by means of 
wave intensity analysis, both with and without a beam as the junction model. The 
discrepancies in the energy ratios between FEM and both thin and thick SEA increase 
with frequency shown in Fig.6 (a). The trend for FEM energy ratios is constant in 
almost all frequency bands, whereas for SEA the attenuation increases approximately 
2dB/Oct as the frequency increases. In the case of "thick" WIA, the energy ratios are in 
agreement with finite element analysis within approximately 2dB up to 2kHz.  

As shown in Fig.6 (b), the attenuation of case 2 increases approximately 3dB in 
comparison with case 1 at 1kHz, because of the existence of the beam at the junction. 
The energy ratios are also in agreement with WIA and finite element analysis within 
approximately 2dB up to 2kHz.  

It is thus established that the WIA technique with the modelling at the junction as 
presented here is applicable to energy transmission for the "thick" L-shaped structures.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) case-1 

Figure 6 - Energy ratio E2/E1 for an L-shaped structure 
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CONCLUSIONS 

 
Wave intensity analysis has been applied in predicting vibration response of L-shaped 
structures consisting of thick plates in the broad band of audible frequencies. 
Calculations based on transmission coefficients obtained from Mindlin’s theory have 
verified that accurate response predictions can be made to compare the preset analysis 
with the finite element method. The attenuation of vibration energy for the L-shaped 
plates with an inserted beam was found to be 8dB at 1kHz by the present method. 
Predictions made using conventional statistical energy analysis were found to 
overestimate the attenuation by 14dB. This deviation is caused by the limits of 
applicability of the thin plate theory for out-of-plane waves. Further development of 
this technique considering multi-element systems is the subject of an ongoing study. 
 

REFERENCES 

 
1. L. Cremer, M. Heckl, E. E. Ungar, Structure-Borne Sound. 2nd edition. (Springer-Verlag, Berlin) 
2. R.J.M. Craik, "The prediction of sound transmission through buildings using statistical energy 

analysis", J. Sound and Vibration, 82(4), 505-516 (1982) 
3. W. Whole, Th. Beckman, H. Schreckenbach, "Coupling loss factors for statistical energy analysis of 

sound transmission at rectangular structural slab joints, part I", J. Sound and Vibration, 77(3), 
323-334 (1981) 

4. J.A. Steel, R.J.M. Craik, "Sound transmission between columns and floors in framed buildings", 
Applied Acoustics, 39, 191-208 (1993) 

5. R.S. Langley, K.H. Heron, "Elastic wave transmission through plate/beam junctions", J. Sound and 
Vibration, 143(2), 241-253 (1990) 

6. M.D. McCollum, J.M. Cuschieri, "Bending and in-plane wave transmission in thick connected 
plates using statistical energy analysis", J. Acoust. Soc. Am., 88(3), 1480-1485 (1990)  

7. A.N. Bercin, "Analysis of energy flow in thick plate structures", Computers & Structures, 62(4), 
747-756 (1997) 

8. K. De Langhe, "High frequency vibraions: contributions to experimental and computational SEA 
parameter identification techniques", Ph.D. thesis, Katholieke Univ. Leuven, Belgium (1996)  

9. R.S. Langley, "A wave intensity technique for the analysis of high frequency vibrations", J. Sound 
and Vibration, 159(3), 483-502 (1992) 

10. R.D. Mindlin, "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", 
J. Appl. Mech., 18, 31-38 (1951) 


